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Lecture Notes on Engineering Measurement
for Software Engineers

Abstract: Measurement is a fundamental skill for engineers. To facilitate
teaching software engineering measurement, materials are provided to support
three lectures: introduction to engineering measurement, measurement theory,
and software engineering measures. These materials include lecture notes suit-
able for class handouts and additional information for instructors--educational
objectives, pedagogical considerations, suggestions for class projects, an anno-
tated bibliography, and transparency masters for use in the delivery of the
lectures.

Preface

Measurement is a fundamental skill for engineers, including software engineers.
Computer science programs, however, frequently do not teach either engineering mea-
surement in general or software engineering measurement in particular. This omission
can be attributed, at least in part, to three problems: the absence of the material from
most undergraduate computer science textbooks, the lack of familiarity with the mate-
rial on the part of instructors, and the newness of much of the knowledge about software
engineering measurement.

This package provides material for three 60-minute introductory lectures on aspects of
engineering measurement. These lectures can be used together or separately, and they
can be used at almost any level in a curriculum. They provide a foundation for subse-
quent, more detailed study of software engineering measurement.

The package has been designed to address the three problems identified in the first
paragraph. To augment existing textbooks and to help instructors become familiar with
software engineering measurement, the package includes three short expository docu-
ments, or "lecture notes":

"* Introduction to Engineering Measurement
"* Measurement Theory for Software Engineers
"* Software Engineering Measures

The third of these documents, in particular, includes material that first appeared in the
literature in 1992, and therefore has not yet been widely disseminated.

The package begins with information for instructors. It includes educational objectives
for the lectures, recommendations for using the materials, pedagogical considerations,
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suggestions for class exercises and projects, answers to selected discussion questions
from the lecture notes, and an annotated reading list.

The second portion of the package contains the three lecture notes documents. Each is a
stand-alone document intended to be photocopied and distributed to the students.
Throughout the lecture notes are several discussion questions, research questions, and
ideas for individual or class projects. We hope that these will help instructors engage
the students in learning the material.

The next portion of the package contains masters for making overhead transparencies.
These include many of the figures from the lecture notes, along with some of the discus-
sion questions and other material we thought might be useful in delivering the lectures.

Finally, there are the detailed forms discussed in the software engineering measures
lecture. Although these could be used as transparency masters, the very detailed
nature of the forms suggests that they should be photocopied and given to the students.
Some of the discussion questions and one of the suggested class projects require the
students to use the forms.
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S
Information for Instructors

1. Objectives

The overall objective of the materials in this package is to give students a basic level of
knowledge and understanding of measurement and its application to software engineer-
ing.

The objectives of the lecture "Introduction to Engineering Measurement" are to enable
students to:
"* understand and use the vocabulary of measurement, including the terms measure,

measurement, accuracy, and precision;
"• recognize everyday examples of measurement in the physical world, and relate those

measurements to engineering;
"• explain in general terms what engineers measure, why they measure, and how they

measure;
"" explain the distinctions between product measures and process measures, between

static measures and dynamic measures, and between direct measures and derived
measures.

The objectives of the lecture "Measurement Theory for Software Engineers' are to
enable students to:
"* understand the difference between a measure and a metric, and to use both terms

correctly;
"• understand thl measurement theory coneepts of relational system, scale, admissible

transformation, and meaningful;
"* explain how measurement can be used to reason about objects and relationships in

the physical world when direct reasoning fails;
"* understand the nominal, ordinal, interval, ratio, and absolute classes of measure-

ment scales, and explain the limitations imposed by each on the kinds of menaningful
statements that can be made about measures in each class.

The objectives of the lecture "Software Engineering Measures" are to enable students to:
"• understand the similarities and differences between software engineering measure-

ment and measurement in the traditional engineering disciplines;
"• explain what can be measured and what should be measured by software engineers,

and why the two are not necessarily the same things;
"" describe in general terms the measures of software size, effort, schedule, quality,

performance, reliability, and complexity;
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"* describe important software attributes that we do not yet know how to measure;

"* explain and use the SEI checklists for defining precise measurement of software
size, effort, and defect counts;

"* explain the importance of, and give examples of, quantitative measurable software
requirements.

2. Where in the Curriculum to Use the Materials

These materials may be used in an undergraduate computer science curriculum at any
level. The introduction to engineering measurement can be used in conjunction with
any course that has a laboratory component, because a lab is an ideal environment in
which to learn to perform measurement. See [Northrop93l for more on measurement in
laboratories. The material on software engineering measures is appropriate in any
course in which the students are doing large programming projects, especially team
projects. The suggested class exercises fit well with such projects.

The lecture on measurement theory requires that the students be able to read mathe-
matical notation, so it probably should be used after they have had a good calculus or
discrete mathematics course.

Although the three lectures are closely related, they can be delivered individually. The
instructor may need to provwde some additional material or vocabulary from the other
lectures, but there is not a strong dependency of any lecture on any other. However, if
the introduction to engineering measurement is not followed relatively closely by the
software engineering measures lecture, the instructor should develop some additional
examples of measurement that are relevant to the current course.

3. Pedagogical Considerations

Engineering education should prepare students to be inquisitive and inventive-to be
able to discover and construct new knowledge when it is needed. This requires the
instructor to rely less on pure lecture and more on guided discussion and experiment.

The materials in this package include more than 20 discussion and research questions
for the students. These will help the instructor engage the students in the learning
process. We recommend that instructors use as many questions as possible, either in
class, in labs, or as homework assignments. Ideally, the instructor can use them to help
the students relate the measurement concepts to their everyday lives, and to see paral-
lels between the engineering of software and the engineering of everyday products.
Seeing these relationships helps the students remember and understand the concepts.

Suggested answers to most of the discussion questions are included in Section 6 of this
document. However, for most questions, there is no one right answer. The instructor
can use the suggested answers as a starting point, but should guide the students in
exploring a range of answers.
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The resetsch questions are distinguished from the discussion questions in that they
probably will require the students to go to the library to look up answers. These ques-
tions are usually tangential to the main ideas of the lecture, so they can be omitted. If
an instructor uses them, it is appropriate to ask several students each to answer a part
of the question (see, for example, research question 6 in "Introduction to Engineering
Measuremnt'). Answers from each student can be distributed to all other students,
either on paper or through electronic mail or a class electronic bulletin board, if
available.

There is another aspect of engineering education that is sometimes overlooked:
students of engineering should gain an understanding of the role of engineering in soci-
ety. Unlike science, which can be done somewhat in isolation, engineering builds
products for people. Students' understanding can be enhanced in many ways. One is to
choose examples of engineering that are very familiar to the students as people and not
just as engineers. A second is to reduce the compartmentalization of the subject matter
of courses--engineering instructors should feel comfortable talking about the humani-
ties, arts, or social sciences where appropriate in engineering courses; humanities
instructors should feel comfortable talking about math or science where appropriate in
their courses. Toward this end, these materials include some mention of history and
etymology.

4. Suggestions for Class Exercises and Projects

The nature of engineering requires people to work in teams, so class exercises andp0 projects are an important part of engineering education. The material in the lecture on
software engineering measures fits well in a project-oriented course, and it also suggests
some useful software projects.

Two class exercises are included in the lecture notes (and reproduced below). These are
short exercises that require the whole class to participate and, thus, can be given as
home .voik assignments.

The objective of the first exercise is to convince the students that counting lines of code
is not as easy as it sounds. It is likely that the counts of physical lines of code will be
more consistent than those of logical lines of code. The instructor can ask first for a
count of the number of "lines of code" without specifying physical or logical, in order to
increase the variance in student answers and thus increase the impact of the exercise.

This exercise can be conducted in class. The instructor may wish to bring blank trans-
parencies and markers to class so that the histograms can be created immediately after
the students give their counts.

Class Exercise

A fragment of a Pascal implementation of a binary tree search algorithm is shown below. Count
the number of physical lines of code and the number of logical lines of code. Collect these counts
from all class members and then plot the results as two histograms (as in Figure 2, page 3 of
"Software Engineering Measures").
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repeat
if tree = nil

then
finished:= true

else
with treeA do

if key < data
then

tree := left
else if key > data

then
tree := right

else
finished = true

until finished;

The second exercise addresses the common concern that software size measured in logi-
cal lines of code is somehow better than physical lines Jf code, by showing that the two
measures are related. Prior to discussing this exercise, instructors may want to read
Section 3.2.1 in [Carleton92], which presents the ratio.ale for the SEI recommendation
to use physical rather than logical lines of code as a size measure.

Class Exercise

We have seen that it is easier to measure physical lines of code than logical lines of code in a
program. If there is a strong mathematical relationship between the two measures, then we can
make the easy measurement and use it to get a fairly good estimate of the other measure.

To test this hypothesis, first use the size definition checklists to define physical lines of code and
logical lines of code. Then each member of the class should make the measurements for a few of
his or her own programs. Plot the relationship between the two measures. Is it linear? If you
are familiar with curve-fitting techniques, use them to establish a mathematical relationship
between the two measures.

This exercise works only ff all students are using the same size definition checklists.
The instructor can develop an appropriate checklist in class, based on rfcommendations
from the students. Then the students can apply the checklist to their pitgrams as a
homework assignment. Either the instructor or a designated student can collect the
data from all students and look for the mathematical relationship.

Instructors should note that doing these exercises in class will take a significant amount
of time, so it would be wise to allocate more than 60 minutes to covering the material on
software engineering measures.

The following class project is included in the lecture notes. It might be described as a
measurement-related "add-on" to a large programming project that is already part of
the course. It is intended to give the students a taste of the professional software engi-
neering environment.
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Class Project

Use the checklist to define precisely the effort measures to be made and reported for a large class
programming project. Choose one class member to be the project administrator, who is
responsible for organizing and reporting the measures. Design a schedule and a reporting
system through which each class member makes and reports his or 1. -r own personal effort
measures.

At the end of the project, determine project costs associated with major development phases such
as requirements analysis and specification, design, coding, and testing. Use a typical figure of
$50 per hour to determine the total value of your product to your customer.

There are also programming projects that build software tools to support measurement.
An obvious example is a tool that can measure lines of code. The items on the SEI defi-
nition checklist are parameters that can be varied. A design goal should be that the tool
be easily modifiable to work on different programming languages; thus, language-
specific code should be minimized and encapsulated in a module.

Another programming project is a database that holds size data in the categories on the
SEI definition checklist. The program should be able to produce the kinds of reports
deined by various data array specifications.

5. Suggested Answers to Discussion Questions

The discussion questions in the lecture notes are reproduced here for the benefit of
instructors. We have included a suggested answer or partial answer for each. In gen-
eral, there is no single, complete, correct answer. We hope the answers given will help
instructors conduct a classroom discussion; this is an important and effective way of
teaching much of the measurement material.

5.1. Questions from "Introduction to Engineering Measurement"

Discussion Question 1

Measurement of length almost certainly predates historical records. The earliest measures were
probably in terms of the human body, and some of those measures survive to this day. The most
obvious example is the foot. What are some other such measures? (This question may be easier
if you have had occasion to measure horses or whiskey.) What is a cubit?

Answer

Horses are measured in hands and a glass of whiskey is sometimes measured in fingers. A cubit
is the distance from the elbow to the end of the outstretched middle finger, typically about 18
inches.

Discussion Question 2

What are some common units of measure that use the prefixes in Figure 1 (page 3 of
"Introduction to Engineering Measurement")? What is another term for one one-millionth of a
meter, and why is a machinist likely to prefer it to micrometer? Why is the term decibel, a unit )f
loudness, much more common than the whole unit, the bel?
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Answer

Some common units of measure are kilobyte, kilometer, and kilogram; megabyte; decibel;
centimeter, millisecond, millimeter, and milligram; and microsecond. One one-millionth of a
meter is commonly called a micron. A machinist uses a tool called a micrometer caliper, or more
commonly, a micrometer. The term decibel may be more common because the loudness of sounds
we hear in everyday life is in the range of about 50 to 100 decibels, and we may be more
comfortable dealing with these whole numbers than with measures like 6.2 and 7.3 bels.

Research Question 3

What reasoning might have been used to choose the names of the prefixes in the metric system?
Do the words mean anything? Hint: What are the Greek words for ten, hundred, and thousand?
What are the Latin words? What are the Danish or Norwegian words for fifteen and eighteen?
What is an Italian word for small? What are Greek words for small, large, giant, dwarf, and
monster?

Answers

Latin: decem (ten), centum (hundred), mille (thousand). This also suggests the origin of the
English word mile, which originally meant the length of 1000 double steps by a Roman soldier.

Greek: deka (ten), hekaton (hundred), chilioi (thousand), mikros (small), megas (large), gigas
(giant), nanos (dwarf), teras (monster).

Danish and Norwegian: femten (fifteen), atten (eighteen).

Italian: piccolo (small).

Research Question 4

What do the terms megaflops and gigalips denote? Hint: These do not refer to Hollywood movies
that lose millions of dollars or to a medical condition. Another hint: They do refer to computer
performance.

Answers

The term megaflops means 'million floating point operations per second" and is commonly used
as a unit of measure for computers that perform scientific calculations. The term gigalips means
"billion logical inferences per second" and is not so commonly used as a unit of measure for
computers designed for artificial intelligence applications.

Discussion Question 5

What are some real-world entities that are measured in units using some of the more extreme
prefixes? For example, is a typical human life span closer to a megasecond, gigasecond, or
terasecond? How far does light travel in a microsecond, a nanosecond, or a picosecond? What
two places are about a megameter apart? A terameter apart? Which is larger, a zettameter or
the diameter of the Milky Way galaxy? Is the mass of an electron more or less than a yoctogram?

Answer

A human life span of 75 years is 236,675,520 seconds, or about one-quarter gigasecond. Light
travels about 983 feet in a microsecond, 11.8 inches in a nanosecond, and about the thickness of
three sheets of paper in a picosecond. The distance from New York to Charlotte, North Carolina,
is about a megameter. The distance from the sun to Saturn is about 1.4 terameters. The diame-
ter of the Milky Way galaxy is about one zettameter. The mass of an electron is about 0.001
yoctogram.
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Research Question 6

The last four centuries have produced many scientists who made important contributions to our
understanding of the physical world, and several of these scientists have been honored by having
units of measure named for them. Identify the following scientists, the unit (or scale) of
measure named for them, the kind of measure it is, and its definition in terms of the
fundamental measures.

Answer

See the table on the next two pages.

Discussion Question 7
What measures of the current state of your world do you make periodically? What trends are you
trying to identify?

Answer

You may want to suggest to the students such measures as weight (especially for dieters), bank
balance, and grade point average. Athletes in training track their performance. We may notice
an odometer reading periodically on a trip in order to determine average speed and predict our
arrival time. We may notice our car's fuel gauge or a home heating oil measurement to predict
when we will need to buy more fuel. We may watch the price of stocks to know when to buy or
sell.

Discussion Question 8
How can we as software engineers rephrase these requirements in quantifiable-and therefore
potentially measurable-terms?

Answer

Performance measurements vary widely with the application. We might say that a compiler
must compile 2000 lines per minute, or a word processor must open a document in 2 seconds or
scroll a whole page in one-half second. We might require that the object code for the controller in
a VCR fit within 4 kilobytes of storage.

This question is discussed in more detail in the lecture notes document "Software Engineering
Measures."

Discussion Question 9

Have you had to write a term paper or a major computer program and discovered the night
before it was due that you still had 50% or 80% of the work ahead of you? Assuming that the
problem was not just procrastination, how might you have been helped by a realistic schedule
backed up by quantitative progress measurements?

Answer

There is no single answer to this question. Good estimates of the amount of work needed on a
project may help you choose a project that can be completed in the allotted time. Early detection
of slippages in schedules may permit adjustments in the schedule or different approaches to the
work that will result in timely completion of the project.

CMU/SEI-93-EM-9 7



Name Identification Unit or Scale Definition

Andr6-Marie Ampere French physicist ampere: electric one coulomb per second, or
1775-1836 current current produced by one volt

across one ohm

Anders J. Angstr6m Swedish physicist angstrom: length 10-10 meter
1814-1874

Amedeo Avogadro Italian chemist, Avogadro's number: 6.023 x 1023
physicist number of atoms or
1776-1856 molecules in a mole

Alexander Graham American inven- bel: ratio of electric log Pl/p2
Bell tor 1847-1922 or acoustical signal

power

Anders Celsius Swedish astrono- Celsius:
mer 1701-1744 temperature scale

Charles A- de French physicist coulomb: electric quantity of charge transferred
Coulomb 1736-1806 charge by one ampere in one second
Marie Curie and French chemists curie: radioactivity 3.7 x 1010 disintegrations per
Pierre Curie 1867-1934, second

1859-1906

Gabriel D. Fahrenheit German physicist Fahrenheit:
1686-1736 temperature scale

Michael Faraday English chemist faraday: quantity quantity transferred in
and physicist of electricity electrolysis per equivalent
1791-1867 weight of an element (approx.

96,500 coulombs)

farad: capacitance capacitance of a capacitor with
one volt potential when
charged by one coulomb

Enrico Fermi Italian/American fermi: length 10"15 meter
physicist
1901-1954

Karl Friedrich Gauss German mathe- gauss: magnetic 10-4 tesla
matician, astro- flux density
nomer 1777-1855

Joseph Henry American physi- henry: inductance inductance of a circuit in which
cist 1797-1878 the variation of one ampere per

second results in an induced
electromotive force of one volt

Heinrich R. Hertz German physicist hertz: frequency one cycle per second; or
1857-1894 second"1

James P. Joule English physicist joule: work or 107 ergs
1818-1889 energy

William Thomson, English mathe- Kelvin: tempera-
Lord Kelvin matician, physi- ture scale; kelvin:

cist 1824-1907 thermodynamic
temperature

Suggested Answers to Research Question 6
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Name Identification Unit or Scale Definition
James Clerk Maxwell Scottish physicist maxwell: magnetic flux per square centimeter of

1831-1879 flux normal cross section in a
region where the magnetic
induction is one gauss

Friedrich Mohs German Mohs scale:
mineralogist mineral hardness
?-1839 scale

Isaac Newton English mathe- newton: force 1 kilogram per second per
matician, physi- second
cist 1642-1727

Georg Simon Ohm German physicist ohm: resistance resistance of a circuit in which
1787-1854 a potential difference of one

volt produces a current of one
ampere

mho: conductivity ohm-I

Hans Christian Danish physicist, oersted: magnetic intensity of a magnetic field in
Orsted chemist intensity a vacuum in which a unit

1777-1851 magnetic pole experiences a
mechanical force of one dyne in
the direction of the field

Blaise Pascal French mathe- pascal: pressure 1 newton per square meter
matician, philo-
sopher 1623-1662

Charles R. Richter American Richter scale:
seismologist earthquake
1900-1985 intensity scale

Wilhelm Rdntgen German physicist roentgen: x- amount of radiation that pro-
1845-1923 radiation or duces, in one cubic centimeter

gamma radiation of dry air at 00C and standard
atmospheric pressure, ioniza-
tion of either sign equal to one
electrostatic unit of charge

Nikola Tesla American physi- tesla: magnetic 1 weber per square meter
cist 1856-1943 flux density

Allesandro Volta Italian physicist volt: electromotive potential across one ohm when
1745-1827 force; electrical one ampere of current is

potential difference flowing

James Watt Scottish inventor watt: power one joule per second; one volt
1736-1819 times one ampere

Wilhelm E. Weber German physicist weber: magnetic 108 maxwells
1804-1891 flux

Suggested Answers to Research Question 6 (continued)
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Discussion Question 10

The classic tradeoff in programming is time vs. space. What does this mean? What are some
examples? Can you describe a situation from your own experience in which you consciously
made a time/space tradeoff?

Answer

Often there are several algorithms that will accomplish a particular task. Some of them may be
faster but require more space. For example, some sorting algorithms may be fast but require an
amount of temporary storage proportional to the size of the data being sorted; others are slower
but need only a constant amount of temporary storage. Some algorithms require repeated
calculation of particular intermediate values. If sufficient storage is available, we can compute
the values once and save them; otherwise, we must recalculate them each time they are needed.
When designing animation software, if sufficient memory is available, we may be able to create
several different images beforehand, store them, and move them to the screen display memory
rapidly when needed. Otherwise, the images may have to be recreated whenever needed,
resulting in slower animation.

Discussion Question 11

What are some common instruments that you use to measure the following quantities? Estimate
the accuracy and precision of the instruments. What kinds of errors are common in these
measurements?

Answer

Your height: a tape measure or yardstick; accuracy and precision depend on the user, but are
probably ±118 inch. Parallax errors are common.

Your weight: a bathroom scale; accuracy perhaps ±5 pounds; precision perhaps ±1 pound. Null-
point errors are common; parallax and hysteresis errors may occur. You may want to ask the
students to describe an experiment to look for hysteresis errors; one such experiment would
be to compare readings from getting on the scale yourself and from getting on with another
person, who then steps off.

The distance you drive your car on a trip: odometer; accuracy is probably ±5%, precision may be
±1%. Calibration errors are likely to be the most significant source of error.

The pressure in your car's tires: pressure gauge; accuracy is perhaps ±3 psi, precision may be ±1
psi. Random errors may be the most common because of the difficulty of using most pressure
gauges in a consistent manner.

A spark plug gap: a feeler gauge; accuracy and precision are perhaps ±0.002 inch. Random
errors are common.

The time it takes an athlete to run 100 meters: stopwatch; if used consistently, accuracy and
precision are probably within 0.2 second. Random errors are probably the most common
because of the variability of the user's reaction time.

The temperature of a beef roast: a meat thermometer; accuracy and precision are maybe ±100F.
Calibration errors are probably most common.

The frequency of the middle C note on a piano: a tuning fork; accuracy and precision are maybe
±5 Hz. Calibration and random errors are common.

The thickness of a piece of paper: micrometer calipers; accuracy and precision are perhaps
±0.001 inch. Calibration errors are possible. The thickness of a single sheet of paper may be
near the limit of sensitivity of the instrument. The students might also suggest measuring a
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known number of sheets of paper, such as a ream, with a ruler and then computing the
thickness of a single sheet; this can be quite accurate also.

Discussion Question 12

What measurement instruments do you use that you consciously calibrate from time to time?
Can you think of an everyday measurement where a null-point systematic error might be intro-
duced purposely? Have you ever experienced a parallax error while you (or your passenger) were
reading your car's speedometer or other instrument? Did the speedometer appear to read higher
or lower to the passenger? How does this depend on whether the needle is in front of the
numbered scale or behind it?

Answer

It is common to calibrate a clock or wristwatch from time to time. Some people like to set the
null point on their bathroom scales to something other than zero. The passenger will normally
see a higher than actual speed if the scale is in front of the needle; lower otherwise. Note that
this is based on the assumption that the scale increases from left to right and the car is a left-
hand drive model.

Research Question 13

What is a vernier and how does it work? What is its intended effect on the accuracy or precision
of a measurement?

Answer

A vernier is a short scale that is used in conjunction with a longer scale and is designed so that
its reading is tenths or hundredths of the smallest division of the longer scale. It can increase
the accuracy and precision of measurements considerably.

Discussion Question 14

A little-known fact is that there are 51,500,000 hairs on the average horse. Suggest a sampling
technique that might have been used to discover this fact.

Answer

First, make measurements of the horse so you can compute the surface area. Then count the
hairs in several representative areas in patches of perhaps a square centimeter. Multiply the
average number of hairs per square centimeter by the area of the horse. All this may be facili-
tated by choosing a friendly and patient horse.

Discussion Question 15

Suppose you are the manager of an engineering project with 200 staff members. You want to
measure how much staff time will be spent on meetings, administrative paperwork, library
research, laboratory work, writing reports, and work at the computer over the next year.
Suggest a sampling technique that might provide estimates of these numbers without waiting
the whole year.

Answer

Choose a representative sample of the staff, meaning people at all levels and with all kinds of
responsibilities. Measure how they spend their time one day a week for a few weeks. Then
extrapolate to the whole staff for the whole year.

CMU/SEI-93-EM-9 11



5.2. Questions from "Measurement Theory for Software Engineers"

Discussion Question 1

For each of the following sets of objects, suggest a measure and scale for those objects, and iden-
tify the class in which the scale belongs (nominal, ordinal, interval, ratio, absolute).

Answer

Mass of physical objects: grams (ratio).

Loudness of sounds: decibels (logarithmic scale; see comments below on earthquake intensity).

Brightness of lights: candela (ratio).

Human intelligence: IQ (ordinal).

Beauty of the paintings in a museum: perhaps with something like a scale from 1 to 10 (ordinal);
many might argue that this is so subjective that a nominal scale might be the best we could
do.

Kelvin scale of temperature: kelvins (ratio); the Kelvin scale is based on energy, so it is not just
an interval scale like the Celsius and Fahrenheit temperature scales.

Size of a software system: physical lines of code (absolute).

Productivity of different assembly line workers: widgets produced per hour (ratio).

Productivity of different software engineers: lines of code produced and delivered per hour
(ratio).

Cost of different models of automobiles: dollars (ratio).

Reliability of different models of automobiles: frequency of repair, measured in number of times
in the shop per year (ordinal); some might argue that this is an interval or ratio scale, which
is probably true in the strict numerical sense but not in the sense of the underlying concept
of reliability.

Desirability of vacationing in each of the 50 states of the US: perhaps with something like a
scale from I to 50 (ordinal); very subjective, as with beauty of paintings.

Earthquake intensity: Richter scale (ordinal scale if we just look at the numbers; however, this is
actually a logarithmic ratio scale, so we have to take that into account in statements like "a
level 8 earthquake is twice as strong as a level 4 earthquake" [not true]; "a level 8
earthquake is 10,000 times as strong as a level 4 earthquake" [true]).

Speed of different models of computer: MIPS, meaning "million instructions per second" (ratio).

User-friendliness of word-processing or spreadsheet software: a scale of 1 to 10 (ordinal); very
subjective.

Discussion Question 2

The cost of objects is usually regarded as a measure that has a ratio scale; it is meaningful to
talk about one automobile model being twice as expensive as another. On the other hand,
attributes such as the quality of a car or the complexity of a software system may be measurable
only with ordinal scales (or perhaps interval scales). An engineer is often called upon to make
judgments in terms of value, which we might define as quality per unit of cost. For example,
should you pay twice as much for twice the quality? Should you pay more or less for software
that is more complex? What is "today's best value in a luxury automobile"? When you create a
value measure by combining a cost measure on a ratio scale with a quality measure on an ordinal
or interval scale, what kind of a scale do you get?
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Answer

There is no simple answer to these questions, mostly because quality can be defined and
measured in so many ways. You may want to ask students if the unit prices found in most
supermarkets help customers measure value. A package twice as large at twice the cost may be
the same value. Two packages of a product that are the same size but different brands may be
priced differently. Is the cheaper one of higher value?

Usually the kind of scale created from quality and cost scales depends on the quality scale
involved.

Research Question 3

How does the science of thermodynamics allow us to assert that the Kelvin scale of temperature
is a ratio scale and not just an interval scale (like the Fahrenheit and Celsius scales)?

Answer

The Kelvin scale, which allows us to specify temperature in "kelvins," not "degrees Kelvin," is
based on the amount of energy present in the substance being measured. Thus the numbers on
the scale can start at 0 kelvins and are not arbitrarily related to the freezing or boiling of water.

5.3. Questions from "Software Engineering Measures"

Discussion Question I

As an alternative to the simple process of counting carriage returns, some organizations suggest
the equally simple process of counting semicolons (in languages like Pascal, Ada, and C). Discuss
the adequacy of such a measure, using the Pascal code fragment in the class exercise above (page
4 of "Software Engineering Measures") as an example.

Answer

The relationship between the number of semicolons and the number of carriage returns varies
according to programming style and somewhat among the three languages. In almost all cases,
however, there is likely to be a linear relationship between the two measures. The biggest
unknown factor is how the programmer writes comments.

Discussion Question 2

Look carefully at the SEI effort reporting checklist. How many of the different activity attributes
and product-level function attributes do you recognize as applicable to your own class program-
ming work? How would you measure your own work in each of the applicable categories?

Answer

On small projects, such as typical programming assignments in undergraduate classes, it may be
quite difficult to distinguish design, coding, and testing because students typically switch from
one activity to another several times per hour. On larger projects, including those most often
undertaken by software engineers, the measurement can be easier. The different phases may
take weeks, so it is usually easy to know which one you worked on today. Keeping track of who
attended which meetings and how long the meetings lasted may be the responsibility of a sup-
port staff person. Some programming support tools can automatically keep track of time spent
editing documents, editing code, compiling, or testing.
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Discussion Question 3

You have probably used a variety of commercial software packages such as word processors,
spreadsheets, d-qwing programs, or games. You have also probably encountered a situation
where the behavior of the program was not what you expected. In such situations, how can you
determine whether the problem is a user mistake, an error in the user manual, or an actual error
in the program? How much does the answer to the previous question matter to the user? To the
software engineers who must resolve the problem?

Have you ever heard a programmer say, "That's not a bug, it's an undocumented feature!"

Answer

When using a software package, we often believe we hit a particular key or issued a particular
command when in fact we did something else. In many such cases, there is no undeniable record
of our action, so we cannot prove that a user mistake did or did not occur.

When the behavior of a software package is not what the user manual says, either the manual or
the software can be wrong. Without seeing the software specification, there is no way to tell
which one is in error. To the user, it will usually seem to be a software error because the user's
expectation was based on what the manual said. For the software engineer, who may have the
software specification, it is easier to determine where the fault lies. If the specification does not
cover the particular situation, it may be tempting to change the manual to match the software
rather than vice versa. However, the cost of printing and distributing revised manuals will have
to be weighed against the cost of creating and distributing revised software.

Discussion Question 4

What are some other everyday examples of performance measures? What kinds of performance
measures might be important to the designers and users of a long-distance telephone system, an
airliner, an automatic banking machine, a washing machine, a water heater, or the food prepara-
tion equipment at a fast-food restaurant? Are these measures of response time, throughput, or
something else?

Answer

The designers and users of a telephone system may want to measure performance in terms of the
time it takes for a call to go through (a response time measure) or the number of calls that can be
completed per minute (a throughput measure). Airplane performance measures include cruising
speed and rate of climb. Banking machine performance might be measured in response time to
verify the user's identification number and the time to complete a transaction. A washing
machine might be measured in minutes per load or loads per day. A water heater's performance
is often measured in gallons per hour or in recovery time (time to reheat after all the hot water is
replaced by cold water). Fast-food preparation machines might be measured in start-up time or
units of food prepared per hour.

Discussion Question 5

What kind of measurement technique could be used to demonstrate that a word processor can
check the spelling of 500 words per second? What other response time and throughput measures
might be appropriate for word processors?

Answer

The developers of a word processor could instrument the code to record the time before and after
each use of the spell checker and the number of words checked. The speed could be determined
from these values. A user of the system might use a wristwatch or stopwatch to measure the
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apparent time used in spell-checking a document. Knowing this time and the number of words
in the document would allow a less accurate and less precise measure of the speed.

Some other common response time measures are the time to perform a particular formatting
operation, the time to scroll up or down a page, and the time to open or close a document.

Discussion Question 6

In retail stores, cash registers have given way to point-of-sale terminals that are connected to one
or more computer systems. Many of these terminals have the capability to read the magnetic
encoding strip on credit cards, contact the credit card company, and get purchase authorization
with just a single keystroke. What kinds of performance requirements might you expect if you
were asked to design the software system that performs purchase authorization? Which are
response time requirements and which are throughput requirements?

Answer

The two most obvious performance measures are the response time for a particular authorization
request from one terminal and the number of authorizations per minute for the overall system.
A response time of 10 to 15 seconds might be acceptable to users of the system. A large system
might have a requirement to be able to process several hundred requests per minute.

Discussion Question 7

Issues of reliability and availability sometimes strike very close to home when the system
involved is our car. Which components on a car seem to have a low MTBF (mean time between
failures)? High MTBF ? Of these, which have high and low MTTR (mean time to repair)? What
parts or components of a car are usually involved in preventive maintenance? Are these the
same as the ones you identified as having a low MTBF?.

Answer

If we define failure as degradation of performance below a desirable level, then we might expect
a low MTBF for the oil, air filter, oil filter, spark plugs, and PCV valve. These components are
typically replaced during preventive maintenance, and they have low MTTR. Other components
with MTBF near the low end of the scale might include fuses, coolant, radiator hoses, and tires.
These are also relatively easy to replace. High MTBF items might include the frame and engine
block.

Discussion Question 8

Computer scientists have expended much effort in pursuit of program correctness, which we
define informally as the equivalence (in some mathematical sense) of the requirements specifica-
tion and the code. You may have studied the various methods that have been developed to do
proofs of correctness.

Software engineers might suggest, "Correctness is a red herring-, it is unachievable and
unnecessary. Reliability is much more important."

Consider a software package that you use frequently, such as a word processor or compiler.
Suppose you have experienced 100% reliability of the software under the conditions of your use,
although there are known defects in parts of the software you never use. Technically, the soft-
ware is incorrect, but to you it is perfectly satisfactory. Which is more important? Which costs
more to achieve?
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Suggest arguments on both sides of this issue. You may want to distinguish correctness at the
module level from correctness at the system level. Consider also the question of whether a
requirements specification can be shown to be correct.

Do you detect a fundamental difference between the philosophies of computer science and soft-
ware engineering?

Answer

There is no easy answer to this question. Lehman discusses some of these issues [Lehman80].

As suggested, quality may be defined as freedom from defects and suitability for use. If the user
never sees a defect, then, in one sense, there is no defect. (How is this different from the old
question, "If a tree falls in a forest and no one is there to hear it, is there a soundr" What is the
definition of sound?) How might you define defect to make this argument valid? What about
terms like latent defect or potential defect?

When software is intended for direct use by a person, such as a word processor or spreadsheet, it
is impossible to have verifiably correct requirements. Issues of quality must depend on the user's
perception of freedom from defects and suitability for use, rather than a proof of those attributes.

Software that is embedded in a machine or system may be a different case. Consider, for exam-
ple, the software that controls the operation of a VCR. There is only a small number of kinds and
sequences of inputs, and the response to each input can be rigorously specified. Under those
conditions, we might well expect to be able to prove the software correct.

Computer science sometimes tends toward the abstract, absolute end of the philosophical spec-
trum on issues like these, while software engineering tends toward the real-world, actual-use
end of the spectrum.

Discussion Question 9

Although we cannot measure most of the ilities directly, we may have strong intuition that
certain measurable attributes are closely related to one of them. For example, we may design
software so that all the system-dependent information is encapsulated in a single module. To
port the software to a different computer system might then require recoding of that module
only. We could argue that, intuitively, the number of modules that use system-dependent
information is a measure of portability.

Suggest other measures that you believe intuitively are related to the unmeasurable ilities.

Answer

There are no specific answers to this question. However, students are likely to suggest ideas
related to modularity, information hiding, and parameterization. This provides a basis for an
argument that such programming practices can contribute to overall software quality, even
though we can't measure a direct relationship.

6. Further Reading

Below is a short annotated bibliography of sources from which the three sets of lecture
notes were derived. Instructors teaching this material for the first time may want to
spend some time reviewing these references. Nearly all of them are readily available
and quite readable.

Because the materials can be used in such a wide range of situations, we chose not to
include bibliographies or suggested further readings in the lecture notes documents for
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the students. Instead we have annotated this bibliography to give some guidance to the
instructor with respect to which items might be appropriate for students at various
levels. We recommend that instructors identify one or two items for each lecture, espe-
cially for the benefit of the better students.

Carleton92 Carleton, A. D.; Park, R. E.; Goethert, W. B.; Florac, W. A.; Bailey, E. K;
& Pfleeger, S. L. Software Measurement for DoD Systems:
Recommendations for Initial Core Measures (Tech. Rep. CMU/SEI-92-TR-
19, ADA 258305). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1992.

Abstract: This report presents our recommendations for a basic set of soft-
ware measures that Department of Defense (DoD) organizations can use to
help plan and manage the acquisition, development, and support of software
systems. These recommendations are based on work that was initiated by
the Software Metrics Definition Working Group and subsequently extended
by the SEI to support the DoD Software Action Plan. The central theme s!
the use of checklists to create and record structured measurement descrip-
tions and reporting specifications. These checklists provide a mechanism for
obtaining consistent measures from project to project and for communicating
:'nambiguous measurement results.

This report presents a summary of the recommended initial core mea-
sures that are detailed in three other SEI technical reports [Park92,
Goethert92, Florac92]. It describes in general terms much of the motiva-
tion and justification for the recommended measures. It is good back-
ground for instructors, but much of it will be lost on students who have
never experienced the industrial software environment.

Dunham83 Dunham, J. R.; & Kruesi, E. "The Measurement Task Area." Computer

16, 11 (Nov. 1983): 47-54.

This paper provided some of the ideas on why engineers measure for the
lecture on engineering measurement. It is good background reading for
instructors and is probably readable by students at the junior or senior
level.

Florac92 Florac, W. A., et al. Software Quality Measurement: A Framework for
Counting Problems and Defects (Tech. Rep. CMU/SEI-92-TR-22, ADA
258556). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1992.

Abstract: This report presents mechanisms for describing and specifying
two software measures--software problems and defects-used to understand
and predict software product quality and software process efficacy. We
propose a framework that integrates and gives structure to the discovery,
reporting, and measurement of software problems and defects found by the
primary problem and defect finding activities. Based on the framework, we
identify and organize measurable attributes common to these activities. We
show how to use the attributes with checklists and supporting forms to
communicate the definitions and specifications for problem and defect
measurements. We illustrate how the checklist and supporting forms can be
used to reduce the misunderstanding of measurement results and can be
applied to address the information needs of different users.
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This report presents in detail the ideas on software quality measurement
introduced in [Carieton92l. It discusses why it is important to be able to
measure software problems and defects in terms of quality, cost, and
schedule. The report will be most useful to instructors, but is also appro-
priate for students in courses or course segments that address software
project management or quality assurance.

Goethert92 Goethert, W. B., et al. Software Effort Measurement: A Framework for
Counting Staff-Houre' (Tech. Rep. CMU/SEI-92-TR-21, ADA 258279).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1992.

Abstract: This report contains guidelines for defining, recording, and
reporting staff-hours. In it we develop a framework for describing staff-hour
definitions, and use that framework to construct operational methods for
reducing misunderstandings in measurement results. We show how to
employ the framework to resolve conflicting user needs, and we apply the
methods to construct specifiations for measuring staff-hours. We also
address two different but related aspects of schedule measurement. One
aspect concerns the dates of project milestones and deliverables, and t.e
second concerns measures of progress. Examples of form for defining and
reporting staff-hour and schedule measurements are illustrated.

This report presents in detail the ideas on software quality measurement
introduced in [Carleton92]. The report will be most useful to instructors,
but is also appropriate for students in a course on software project
management.

Holman89 Holman, J. P. Experimental Methods for Engineers, 5th Ed. New York:
McGraw-Hill, 1989.

This book presents many basic definitions related to engineering mea-
surement, information on the design of experiments and the analysis of
experimental data, and a very thorough discussion of instruments and
techniques for measuring physical properties. It is probably most appro-
priate for students of mechanical engineering, but students in other engi-
neering disciplines can benefit from it as well.

IEEE83 IEEE Standard Glossary ol Software Engineering Terminology
(ANSI/IEEE Std 729-1983). New York: IEEE, 1983.

The definitions of the ilities in the lecture on software engineering mea-
sures takes its definitions from this document. It is a useful reference for
both instructors and students of software engineering.

Lehman80 Lehman, M. M. "Programs, Life Cycles, and Laws of Software Evolution."
Proceedings of the IEEE 68, 9 (Sept. 1980): 1060-1076.

Abstract By classifying programs according to their relationship to the
environment in which they are executed, the paper identifies the sources of
evolutionary pressure on computer applications and programs and shows
why this results in a process of never ending maintenance activity. The
resultant life cycle processes are then briefly discussed. The paper then
introduces laws of Program Evolution that have been formulated following

18 CMU/SEI-93-EM-9



quantitative studies of the evolution of a number of different systems.
Finally an example is provided of the application of Evolution Dynamics
models to program release planning.

This paper provides the motivation for discussion question 8 in the lecture
on software engineering measures. It also provides some motivation for
measurement and its role in software maintenance.

Lehman91 Lehman, M. M. "Software Engineering, the Software Process and Their
Support." Software Engineering Journal 6 (Sept. 1991): 243-258.

Abstract: Computers are being applied more and more widely, penetrating
ever deeper into the very fabric of society. Mankind is becoming increasingly
dependent on the availability of software and its continuing validity. To
achieve this consistently and reliably, in an operational domain that is
forever changing, requires disciplined execution of the software development
and evolution process and its effective management. That is the goal of
advanced software engineering. This paper summarises basic concepts of
software engineering and of the software development process. This leads to
a principle of uncertainty, analysis of its implications for the software devel-
opment process, an overview of computer-assisted software engineering
(CASE) and brief comments on the societal relevance of these topics. For
researchers in the field and practitioners familiar with individual concepts,
issues and specific solutions, the paper provides a unifying framework, a
basis for conceptual advance. Those without a significant practical software
engineering background and experienced graduate students will extend
general familiarity with fresh insights, new concepts and additional detail.
Undergraduate and graduate students without significant experience may
treat the paper as an introductory text.

This paper and [Lehman80] both provide a wealth of ideas about what
software engineering is and how measurement can play an important
role. The author makes the point that the major success of measurement
is not in measuring products after they have been built, but in providing
models and mechanisms for analysis and forecasting. Both papers can be
read by advanced undergraduate students; both should be read by
instructors.

Musa87 Musa, J. D.; Iannino, A-; & Okumoto, K. Software Reliability:

Measurement, Prediction, Application. New York: McGraw-Hill, 1987.

A graduate course in software r-liability is the best place to use this book,
but an instructor of underuaduates might be able to use it for back-
ground as well.

Musa93 Musa, J. D. "Operational Profiles in Software-Reliability Engineering."
IEEE Software 10, 2 (Mar. 1993): 14-32.

This paper clearly discusses the role of operational profiles in the deter-
mination of software reliability. It is useful background for instructors
and it can be read by advanced undergraduate students.
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Northrop93 Northrop, L. M. Experimental Methods for Software Engineers
(Educational Materials CMU/SEI-93-EM-10). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1993 (forthcoming).

The materials in this package can assist instructors in the development of
laboratories for undergraduate courses in both computer science and
software engineering. Northrop suggests ideas for measurement labora-
tories and for teaching the role of measurement in experimentation.

Park92 Park, R. E., et al. Software Size Measurement: A Framework for
Counting Source Statements (Tech. Rep. CMU/SEI-92-TR-20, ADA
258304). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1992.

Abstract: This report presents guidelines for defining, recording, and
reporting two frequently used measures of software size-physical source
lines and logical source statements. We propose a general framework for
constructing size definitions and use it to derive operational methods for
reducing misunderstandings in measurement results. We show how the
methods can be applied to address the information needs of different users
while maintaining a common definition of software size.

This report presents in detail the ideas on software size measurement
introduced in [Carleton92].

Parnas90 Parnas, D. L.; van Schouwen, A. J.; & Kwan, S. P. "Evaluation of Safety-
Critical Software." Communications of the ACM 33, 6 (June 1990): 636-
648.

Instructors and students with a knowledge of basic probability and
statistics should find this paper readable and useful. It contains a good
introductory discussion of software reliability and reliability measure-
ment. It distinguishes reliability, availability, and trustworthiness of
software systems.

Smith90 Smith, C. U. Performance Engineering of Software Systems. Reading,
Mass.: Addison-Wesley, 1990.

Although this book contains advanced material suitable for practitioners
and graduate students, it can be useful to instructors who are preparing
lectures for undergraduate courses. Chapter 7 discusses performance
measurement, including many basic concepts.

Zuse9l Zuse, H. Software Complexity: Measures and Methods. Berlin: Walter
de Gruyter, 1991.

This book probably has the most comprehensive presentation of software
complexity measures currently available. It defines, categorizes, and
discusses nearly 100 different measures. It also presents fundamentals of
measurement theory. It can be useful to instructors, but it is too detailed
for undergraduate students.
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Introduction to Engineering Measurement

"When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind: it
may be the beginning of knowledge, but you have scarcely in your thoughts
advanced to the stage of science." - Lord Kelvin

How good is a program? How reliable will a software system be once it is installed?
How much more testing should I do? How many more bugs can I expect to find? How
much will the testing cost? How difficult will it be to maintain a system? How much
will it cost to build a new system similar to one we built five years ago? How long will it
take?

Software engineers face questions like these every day of their professional lives. At the
heart of these questions is one of the most important concepts in engineering:
measurement. An engineer needs to know why to make measurements, what can be
measured, what should be measured, how to measure, and what to do with the results.
Let's explore these issues in the general context of science and engineering.

1. Definitions

The first question might be, "What is measurement?" In its simplest form, we can think
of measurement as associating a numeric value with an object or action. We interpret
that value as the amount of some quality or attribute possessed by that object or action.

If we look in dictionaries and technical glossaries, we find definitions like these:

measure (verb) To ascertain the quantity, mass, extent, or degree of something in
terms of a standard unit or fixed amount, usually by means of an
instrument or process; to compute the size of something from dimen-
sional measurements; to estimate the extent, strength, worth, or
character of something; to take measurements.

This document is taken from the SEI educational materials package 'Lecture Notes on Engineering
Measurement for Software Engineers" by Gary Ford, document number CMU/SEI-93-EM-9, copyright 1993
by Carnegie Mellon University. Permission is granted to make and distribute copies for noncommercial
purposes.
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(noun) A standard or unit of measurement; the extent, dimensions,
capacity, etc. of anything, especially as determined by a standard; an act
or process of measuring; a result of measurement.

measurement The act or process of measuring something. Also a result, such as a
figure expressing the extent or value that is obtained by measuring.

These definitions are very general and abstract. We can perhaps gain a better under-
standing of measurement by looking at examples from the everyday physical world.

2. Measures in the Physical World

The materials and forces of the physical world are the raw materials of the traditional
engineering disciplines (such as civil, mechanical, electrical, and chemical engineering).
Measuring in the physical world is thus a basic skill needed by engineers.

There are only a few fundamental physical measures. The most common of these are
length, mass, and time. Other measures can be expressed in terms of these; for exam-
ple, we express the speed of our cars in miles per hour (length divided by time), or our
weight (which is really a measure of the force of gravity on our bodies at the earth's
surface) in pounds (mass times length divided by time squared).

There can be many different units of measurement for a given physical measure. For
example, we can measure length in meters, kilometers, inches, miles, and light-years,
and we can measure time in seconds, minutes, hours, and years.

Discussion Question 1

Measurement of length almost certainly, predates historical records. The earliest
measures were probably in terms of the human body, and some of those measures
survive to this day. The most obvious example is the foot. What are some other
such measures? (This question may be easier if you have had occasion to measure
horses or whiskey.) What is a cubit?

The most common set of measures is the metric system, used throughout the world,
except in the United States, where the English system is more common. (Note that the
English system of measures in no longer the official system in England!) The seven
base units of measurement in the metric system are:

Unit Entity Measured
meter length
kilogram mass
second time
ampere electric current
kelvin thermodynamic temperature
mole number of particles
candela light intensity
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A standard vocabulary of prefixes has been defined in order to measure very large and
very small quantities. These are shown in Figure 1.

Prefix Symbol x 10n Prefix Symbol x 10n
deka- da 1 deci- d -1
hecto- h 2 centi- c -2
kilo- k 3 milli- m -3
mega- M 6 micro- l -6
giga- G 9 nano- n -9
tera- T 12 pico- p -12
peta- P 15 femto- f -15
exa- E 18 atto- a -18
zetta- Z 21 zepto- z -21
yotta- Y 24 yocto- y -24

Figure 1. Metric system measurement prefixes

Discussion Question 2

What are some common units of measure that use the prefixes in Figure 1? What is
another term for one one-millionth of a meter, and why is a machinist likely to
prefer it to micrometer? Why is the term decibel, a unit of loudness, much more
common than the whole unit, the bel?

Research Question 3

What reasoning might have been used to choose the names of the prefixes in the
metric system? Do the words mean anything? Hint: What are the Greek words for
ten, hundred, and thousand? What a~re the Latin words? What are the Danish or
Norwegian words for fifteen and eighteen? What is an Italian word for small? What
are Greek words for small, large, giant, dwarf, and monster?

Research Question 4

What do the terms megaflops and gigalips denote? Hint: These do not refer to
Hollywood movies that lose millions of dollars or to a medical condition. Another
hint: They do refer to computer performance.

Introduction to Engineering Measurement 3



Discussion Question 5

What are some real-world entities that are measured in units using some of the
more extreme prefixes? For example, is a typical human life span closer to a
megasecond, gigasecond, or terasecond? How far does light travel in a microsecond,
a nanosecond, or a picosecond? What two places are about a megameter apart? A
terameter apart? Which is larger, a zettameter or the diameter of the Milky Way
galaxy? Is the mass of an electron more or less than a yoctogram?

Digression. Helen of Troy is said to have been the most beautiful woman of the
ancient world, and her abduction to Troy was the major cause of the Trojan War. The
Greeks needed hundreds of ships to transport their soldiers to Troy, so it is sometimes
said that Helen had the face that launched a thousand ships. Beauty is a difficult thing
to measure, but the legend of Helen of Troy provides one possible solution. We can
choose as our unit of measure the millihelen, which is defined as the precise amount of
beauty necessary to launch exactly one ship.

In science and engineering, we usually choose to use the mks system (meter-kilogram-
second), the cgs system (centimeter-gram-second), or the fps system (foot-pound-second).
Each of these systems of measures includes a variety of other measures that can be
expressed in terms of the basic measures.

Research Question 6

The last four centuries have produced many scientists who made important contri-
butions to our understanding of the physical world, and several of these scientists
have been honored by having units of measure named for them. Identify the follow-
ing scientists, the unit (or scale) of measure named for them, the kind of measure it
is, and its definition in terms of the fundamental measures.

Andrd-Marie Ampere William Thomson, Lord Kelvin
Anders J. Angstr6m James Clerk Maxwell
Amedeo Avogadro Friedrich Mohs (scale)
Alexander Graham Bell Isaac Newton
Anders Celsius (scale) Hans Christian Orsted
Charles A. de Coulomb Georg Simon Ohm (2 answers)
Marie Curie and Pierre Curie Blaise Pascal
Gabriel D. Fahrenheit (scale) Charles R. Richter (scale)
Michael Faraday (2 answers) Wilhelm Rontgen
Enrico Fermi Nikola Tesla
Karl Friedrich Gauss Allesandro Volta
Joseph Henry James Watt
Heinrich R. Hertz Wilhelm E. Weber
James P. Joule

4 Introduction to Engineering Measurement



3. What Engineers Measure

Engineering is often described as being a process that results in useful products. It
follows that we can describe what engineers measure in two broad categories: product
measures and process measures.

We can further categorize the product measures as static and dynamic. Many of the
physical measures of objects-such as size, length, height, width, weight, capacity, and
volume-are static, meaning that they can usually be measured while the object is not
in use. The dynamic measures describe the behavior of the object while it is in use;
these include such attributes as velocity, fuel or power consumption, heat dissipation,
vibration, and noise level. Engineers in the various disciplines (civil, mechanical,
electrical, chemical, etc.) typically need to know dozens of specialized static and dynamic
measures for the kinds of products they build.

The process measures are used to quantify the human activity of engineering, and they
are much more alike across the various engineering disciplines than are the product
measures. They typically include staff size, effort, calendar time, costs, and produc-
tivity. The importance of these measures is best understood by remembering that
engineering activity in our society is subject to economic constraints. Whether the
engineering is done by a private, profit-oriented company or by public, tax-supported
engineers, the success of the project almost always depends on achieving the desired
results on time and within budget.

We also characterize some measures as being basic or directly measurable quantities,
and others as composite or derived quantities. Quantities like length, time, and weight
are usually measured directly, while measures of productivity and velocity are often
derived from direct measures by a mathematical operation (productivity can be
computed by dividing the number of items produced by the time it took to produce them;
velocity can be computed by dividing the distance traveled by the time it took).

4. Why Engineers Measure

There are several reasons why engineers measure. Let's look at the most important
ones.

1. To describe the current state of the world

In one sense, every measurement describes an aspect of the current state of the world-
a measurement made today describes something today, not how it was yesterday or how
it will be tomorrow. But we know that things change over time, both in the physical
world and in the software engineering world. If we can measure the current state of the
world from time to time, it is often possible to discover patterns and trends.

The discovery of patterns in nature has always been one of the fundamental goals of
scienc a. Scientific explanations of the behavior of the physical world, what we often call
scientific theories or laws, are almost always suggested by the results of measurements.
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Once a theory has been formed, additional measurements can be made that support or
refute the theory, thereby leading to a modified or improved theory.

A famous example of the relationships between theory and empirical measurement
comes from the late 16th century. Johannes Kepler was attempting to describe the
apparent motions of the planets with simple mathematical formulas, but without
success. Only after he gained access to the Danish astronomer Tycho Brahe's substan-
tially more accurate measurements of the positions of the planets did the ellipse suggest
itself as the shape of the orbits. Kepler's theory provided a way of predicting the posi-
tion of a planet at a specific time in the future, and other astronomers were able to
make measurements that furthc- -upported the theory. Kepler's theory, when written
as mathematical formulas -s come to be known as Kepler's laws.

Engineers are less often concerned with discovering the fundamental laws of nature
than they are with discovering the behavior of the systems they design and build. They
also may be concerned with trends in the engineering process itself. Measurements
taken over time can help in both areas.

Discussion Question 7

What measures of the current state of your world do you make periodically? What
trends are you trying to identify?

2. To state requirements quantitatively and demonstrate compliance

It is almost impossible to imagine an engineering project without quantitative require-
ments. A civil engineer designing a highway bridge over a river is concerned with the
length of the bridge, the maximum traffic load, the height and flow of the river at flood
stage, the maximum wind load the bridge must withstand, etc. An engineer designing
appliances and small consumer products may be concerned with size, weight, cost, and
power dissipation. An automotive engineer will have requirements of size, weight,
power, passenger space, luggage space, emissions, and crash resistance. All of these
requirements are likely to be expressed quantitatively. When the engineer wants to
demonstrate that a product or system satisfies quantitative requirements, measurement
is necessary.

Software engineers also work with quantitative requirements. Usually these describe
the required performance of the system, although it is not uncommon to have require-
ments for the size of the object code (which may determine the number of integrated
circuit chips required in an embedded system application) or the capacity of the system
(such as in large information systems).

Computer programmers who are not software engineers often try to express require-
ments (either explicit or implicit) with phrases like "the program must be efficient," or
"the program should be as fast as possible," or "the program must be memory-efficient."
Because these requirements are not quantified, and probably not quantifiable, they are
neither meaningful nor acceptable to a software engineer. The ability to measure offers
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the engineer a way to state requirements quantitatively, and then to demonstrate com-
pliance with those requirements.

Discussion Question 8

How can we as software engineers rephrase these requirements in quantifiable-and
therefore potentially measurable-terms?

3. To track progress and predict results of an engineering project

In a large engineering project, periodic measurement of what has been accomplished or
completed allows the project manager to track progress quantitatively. These measures
can be especially useful in the identification of unusual trends, so the manager can fore-
see problems and try to solve them before they get out of hand. This can include not
only technical problems, but also schedule or cost overruns.

Discussion Question 9

Have you had to write a term paper or a major computer program and discovered the
night before it was due that you still had 50% or 80% of the work ahead of you?
Assuming that the problem was not just procrastination, how might you have been
helped by a realistic schedule backed up by quantitative progress measurements?

In many kinds of engineering projects, including software engineering, products
undergo a period of testing and tuning before delivery. Measurements of product
defects, breakdowns, or successful performance can be made over time, and then trends
can be analyzed. Software engineers, for example, use defect counts during testing to
calibrate reliability models, which in turn can predict when system testing will be
complete and the desired level of system reliability achieved.

4. To analyze costs and benefits

Here we are getting at the heart of engineering: making tradeoffs. There are almost
always many ways to design engineered products and many ways to design the compo-
nents and subcomponents of those products. Each design offers advantages and disad-
vantages, and the engineer must trade one quality against another. Sometimes we are
willing to accept more of a negative quality in order to get more of another, positive
quality; sometimes we accept less of a desirable attribute in order to get more of another
desirable attribute.

If we are automotive engineers, for example, we must make tradeoffs among weight,
fuel economy, passenger room, ride comfort, and price. Will we accept more weight, and
therefore decreased fuel economy, to gain more room or more ride comfort? Will we
accept a higher showroom price to gain improved ride comfort? Will we accept the cost
in time and money of research to develop a more fuel-efficient engine or a computer-
controlled dynamic suspension system if it means we can provide both more comfort and
better fuel economy?
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To answer questions like these, engineers must have quantitative data on the costs and
benefits of each design. That data comes from measurement.

Discussion Question 10

The classic tradeoff in programming is time vs. space. What does this mean? What
are some examples? Can you describe a situation from your own experience in which
you consciously made a time/space tradeoff?

5. How Engineers Measure

Traditional engineering measurement is performed with instruments. Much of the
progress in science and engineering over the past few centuries has been facilitated by
the development of new and better measuring instruments. But what makes an
instrument good? Two very important considerations are accuracy and precision.

The accuracy of an instrument is an indication of how much the instrument's reading
differs from a known input. Accuracy is usually expressed either as a percentage of the
maximum measurable value, or as a range of deviation from a correct value. For
example, if a voltmeter that can measure up to 1000 volts is said to be accurate to 1%,
we know that any reading is no more than 10 volts (1% of 1000) high or low. We could
also say that the voltmeter is accurate ±10 volts (the symbol ± is pronounced "plus or
minus").

The precision of an instrument is an indication of the repeatability of a measurement
within a given accuracy. Suppose you measured a 120-volt source each day for a week
with two different voltmeters, and you recorded these readings:

Day Meter A Meter B

Monday 125 120

Tuesday 126 117

Wednesday 125 123

Thursday 124 121

Friday 125 119

Meter A gave readings of 125 ±1 volts, while meter B gave readings of 120 ±3 volts.
Meter A has better precision: ±1 volt is better than ±3 volts. However, we would also
conclude that meter B is more accurate; it was never more than 3 volts off the correct
value, while meter A was always 4 to 6 volts off the correct value.

An electrical engineer would also recognize that meter A could be calibrated so that its
readings would have been 120 ±1 volts, making it both more accurate and more precise
than meter 2. Calibrating a voltmeter may be as simple as adjusting the value of an
electrical component (such as a variable resistor) in the instrument. In general, cali-
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bration of an instrument can improve its accuracy, but only up to the precision of the
instrument. Meter B is probably already calibrated as well as it can be.

A calibration error is an example of a systematic error in measurement. These errors
are a result of the physical limitations of instruments, and they occur in many forms.
Null-point errors are caused when the zero or null reading on an instrument is improp-
erly set, causing a constant shift in all readings. Hysteresis errors occur when a reading
is influenced by the previous reading of the instrument, such as a voltmeter that gives a
low reading when the needle approaches the correct value from below and a high read-
ing when it approaches from above. Parallax errors occur when the measurements
differ depending on the angle from the instrument to your eye.

Engineers are also concerned with random errors in measurement, which occur in the
act of measurement itself, regardless of the systematic errors inherent in the instru-
ment. Meaningful measurements are usually expressed not as a single value, but as a
range in which the actual measurement lies (as in the example above, where the voltage
measurement was 125±1). This range is the absolute error in the measurement. The
relative error is the absolute error divided by the measured value; it is usually expressed
as a percentage.

Reducing systematic errors in measurement may require better instruments or better
calibration of instruments. Random errors can be reduced by making several measure-
ments and computing an average. A more precise study of random errors and their
reduction depends on a good knowledge of statistics, so we won't pursue that here.

Discussion Question 11

What are some common instruments that you use to measure the following quanti-
ties? Estimate the accuracy and precision of the instruments. What kinds of errors
are common in these measurements?

Your height
Your weight
Your car's speed
The distance you drive your car on a trip
The pressure in your car's tires
A spark plug gap
The time it takes an athlete to run 100 meters
The temperature of a beef roast
The frequency of the middle C note on a piano
The thickness of a piece of paper

Introduction to Engineering Measurement 9



Discussion Question 12

What measurement instruments do you use that you consciously calibrate from time
to time? Can you think of an everyday measurement where a null-point systematic
error might be introduced purposely? Have you ever experienced a parallax error
while you (or your passenger) were reading your car's speedometer or other instru-
ment? Did the speedometer appear to read higher or lower to the passenger? How
does this depend on whether the needle is in front of the numbered scale or behind
it?

Research Question 13

What is a vernier and how does it work? What is its intended effect on the accuracy
or precision of a measurement?

Engineers (and scientists) often use another measurement technique: sampling. This
may be defined as selecting and measuring a representative part of a population for the
purpose of deducing parameters or characteristics of the whole population. It is used in
situations where it is impossible or impractical to measure the whole population.

Discussion Question 14

A little-known fact is that there are 51,500,000 hairs on the average horse. Suggest
a sampling technique that might have been used to discover this fact.

Discussion Question 15

Suppose you are the manager of an engineering project with 200 staff members. You
want to measure how much staff time will be spent on meetings, administrative
paperwork, library research, laboratory work, writing reports, and work at the
computer over the next year. Suggest a sampling technique that might provide
estimates of these numbers without waiting the whole year.

A related kind of engineering sampling is seen in quality control in the manufacturing
process. At the factory assembly line, we may take every 100th or 1,000th product for
testing and measurement. Using a variety of statistical techniques, we draw conclu-
sions about the quality of all the products from the measurements made on the sampled
products. Then we adjust the manufacturing process accordingly.

As was the case with measurement error, a thorough discussion of sampling techuiques
depends on knowledge of statistics, so we will not pursue it here.
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6. Concluding Comments

Measurement is an important tool for engineers. As a student of engineering, you
should learn:

"* what can be measured

"* what should be measured

"* what kinds of instruments are used in measurement

"* why measurements are needed

"* how measurements are used

"* how to measure the important quantities in the branch of engineering you are
studying

Learning to measure requires practice, so laboratories and ohcr *"hands-on" experiences
are useful. But pay attention also to the measurements you make in everyday life-
they can teach you a lot about measurement.

Large engineering projects require many kinds of measurements and generate an enor-
mous amount of data. Professional engineers need a good background in statistics in
order to use that measurement data effectively. You would be well served by including
a statistics course in your studies.
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Measurement Theory for Software Engineers

Although mathematics might be considered the ultimate abstract science, it has always
been motivated by concerns in the real, physical world. Thus it is not surprising that
mathematics includes a branch called measurement theory. Some basic definitions from
measurement theory can provide a more precise vocabulary for the study of software
engineering measurement.

1. Measures and Metrics

Informally, we think of a measure as a way of associating a number, representing some
attribute, with a physical object. Such an association is usually called a mapping or a
function in mathematics. More formally, we can give this definition:

Definition 1. Let A be a set of physical or empirical objects. Let B be a set of formal
objects, such as numbers. A measure pu (the Greek letter "mu") is defined to be a one-to-
one mapping p:A -+ B.

The requirement that the measure be a one-to-one mapping guarantees that every
object has a measure, and every object has only one measure. It does not require that
every number (in set B) be the measure of some object (in set A).

Another term that we use informally in measurement, and one that seems to appear
frequently in the literature on software measurement, is metric. Some, but not all,
measures are metrics. A metric is a way of measuring the distance (itself a term with
many interpretations) between two entities, and it has this precise mathematical defi-
nition:

Definition 2. Let A be a set of objects, let R be the set of real numbers, and let
m: A -- R be a measure. Then m is a metric if and only if it satisfies these three
properties:

m(x,y) = 0 for x = y

m(x,y) = m(y,x) for all x,y

m(x,z) : m(x,y) + m(y,z) for all x,y,z

This document is taken from the SEI educational materials package "Lecture Notes on Engineering
Measurement for Software Engineers" by Gary Ford, document number CMUiSEI-93-EM-9, copyright 1993
by Carnegie Mellon University. Permission is granted to make and distribute copies for noncommercial
purposes.
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We could actually allow other sets of numbers in this definition, as long as the set
includes zero and the addition and less-than-or-equal operations are defined on the set.

A common example of a metric is the Euclidean distance metric in the plane. Let
p, = (x,,y,) and p2 = (x2 ,y2) be two points in the plane. Define the distance metric d by:

d(p 1,p 2 )= (x -x2)2 + (Yl - Y2) 2

Another is the "Manhattan" metric, so named because it is closer to the distance we
would travel between two points in (an idealized) New York if constrained to move only
along the east-west and north-south streets. For the same two points as above, we
define this metric m by:

m(p1 ,P 2) = IxI - x21 + ý1 - Y21
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Figure 1. Euclidean distance and Manhattan metrics

Figure i t ese two metrics. To go five blocks north and eight blocks east "as
the crow flies," the distance is approximately 9.43 blocks, but the distance "as the taxi
drives" is 13 blocks.

From this definition we see that it is usually imprecise to speak of a "software metric."
The preferred term is "software measure.s

2. Measures and Relationships
The definition of measure is so general that some measures may not be particularly use-
ful. For example, we can "measure" the members of a football team by the numbers on
their jerseys. However, this measure is not very meaningful when used to answer a
question like "Does player number 64 deserve twice the salary of player number 32?"

We are all familiar with measures of temperature. Suppose you looked at your
Fahrenheit thermometer yesterday at noon and noted that the temperature was 80*,

and today at noon it is only 400. Is today half as warm as yesterday? If the temperature
yesterday was only 20 and today it is 80, is today four times as warm as yesterday?
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Suppose your neighbor made the same observations but used a Celsius thermometer.
Would the same questions make sense?

Some cities report an air quality index, a measure of the toxic gases and rarticulate
matter in the air. Does an air quality index of 40 mean that the air is twice as
unhealthy as an index of 20?

Questions like these assume that two objects have a relationship that can be understood
by looking at a relationship between those object's measures. Using the right kind of
measure may be critical to answering these questions meaningfully.

For some kinds of objects and measures, the relationships are clear. If one board is two
feet long and another is three feet long, the second is longer; furthermore, the relation-
ship between the "amount of board" is the same as the relationship between the
measures (the numbers 2 and 3 in this case). Notice also that it is possible to select the
longer board without measuring either, which indicates that we use an intuitive notion
of "length of board" that is independent of any measure that might be applied.

Sometimes we can manipulate objects to get new objects, and we want to ask questions
about the measure of the new object. If one pile contains 50 pounds of sand and another
contains 100 pounds, when we combine the piles we expect to have 150 pounds of sand.
We implicitly understand that the physical operation of combining piles has the corre-
sponding operation of addition applied to the measures of the piles.

In other cases, the correspondence is anything but clear. Let us consider the complexity
of a software system. Suppose we are building a software system and we have devel-
oped two possible designs. One breaks the system into 10 modules, each with complex-
ity measure in the range of 20 to 30. The other design breaks the system into 20
modules, each with complexity measure in the range 10 to 30. Which design produces a
better (less complex) overall system?

This last example illustrates an important aspect of all engineering problems: choosing
among alternative solutions. Measurement can be very helpful in such situations, if we
use appropriate measures. Most often there are several measures that can be made of
the alternatives, and we will need to make tradeoffs; we may accept less of one desirable
factor to get more of another desirable factor, or we may accept more of an undesirable
factor to get more of a desirable one. But how do we use measures to know how much of
one factor to trade off for how much of another factor? And how do we use measures to
choose among alternatives?

3. Measures and Scales

The problems mentioned above--choosing the longer of two boards or recognizing that
combining two piles of sand gives a larger pile of sand-are easy because we have intu-
itive meanings for the operations of 'compare board length" and "combine sand piles."
We do not have a corresponding intuitive meaiing for the complexity of a software
system based on the complexity of its components. We might describe this as an

Measurement Theory for Software Engineers 3



"intelligence barrier" between questions about objects and the answers to those ques-
tions. This barrier is shown in the left side of Figure 2.

Measurement helps us answer these questions as shown in the right side of Figure 2.
We first measure the objects in question, yielding (usually) numbers. Then we apply
mathematical or statistical techniques to the numbers, yielding another number that
somehow relates to the answer to the original question. The final step is interpretation
of the result, yielding an answer in terms of the original object domain rather than in
the domain of numbers.

Real-world Measuremnen Numnerical
objects, r- \ objects,

relations, relations,
operations operations

Intelligence [1 Mathematics,
barrier VlIlllllwlwil Statistics

to the - rerua
IM: Uft )resltreal wo d Interpretation_`

Figure 2. Measurement and the intelligence barrier

For example, suppose you were given a dozen boards of different lengths and asked to
select the board of "average" length. It would most likely not be intuitively obvious
which board to pick. However, if you measure the length of all the boards, you get a set
of numbe-s. You can then compute the average (arithmetic mean) of those numbers.
Finally, you interpret this number as the length of the board to be chosen, and pick the
board closest to this length.

This technique works because there is an operation on boards that is appropriately
modeled by the arithmetic mean operation on numbers. Measurement theory calls this
relationship a scale.

Mathematically, we can give these definitions:

Definition 3. A relational system is defined as an ordered tuple
(S, rel1, ... , rel., op1,..., opP), where:

S is a nonempty set of objects;

rell,..., reln are ki-ary relations on objects in S (this means that the relation
rel1 defines a relationship among k. objects);

op,,..., op. are binary operations on objects in S (this means that each

operation operates on exactly two objects, producing a third object in S).
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An example of a relational system of real-world objects is one with S being the set of all
piles of sand, a binary relation "bigger than or same size as," and a binary operation
"combine with." An example of a relational system of formal objects (in this case
numbers) is one with S being the set of all nonnegative real numbers, the binary
relation >, and the binary operation +.

In fact, these two examples can be shown to be, in some sense, the same if we apply the
"weight in pounds" measure to piles of sand, yielding numbers, and we interpret those
numbers as weights of piles of sand. Mathematically, we can make this definition:

Definition 4. Let A = (SA, relA1,..., relA, opA1, ... , opA,) be a relational system of

physical or empirical objects, and let B = (SB, relB1,..., relB,, opB1, ... , opBm) be a

relational system of formal objects (such as numbers). Let p:SA -+ S. be a measure.
Then the triple (A, B, y) is a scale if and only if

re/•4(ai,,..., ai, ) 4*# relBi(p•(ai,), ... , .u(a•, ))

and

/u(a opAi b) = u (a) opB A(b)

for all values ofi andj, and for all a, b, a,,..., ai, E SA.

More informally, this definition says two things. First, for every relation defined on the
physical objects, there is a equivalent relation defined on the measures of those objects.
By equivalent, we mean that if a statement about a relationship between or among
objects is true, then the corresponding relationship between or among their measures is
also true. Second, for every operation defined on the physical objects, there is a corre-
sponding operation defined on the measures, such that the result of measuring the
combined objects is the same as performing the corresponding operation on the
measures of the individual objects.

A very mathematical note. The branch of mathematics known as abstract algebra
deals with abstract entities consisting of sets of objects and associated operations. A
mapping from one of these entities to another that preserves the operations in the way
described in our definition of scale is called a homomorphism. This term comes from the
Greek words for same (homos) and form (morphe). The measure y in a scale is a
homomorphism.

Mathematical measurement theory also helps us classify different kinds of scales and
determine whether certain questions can meaningfully be asked and answered about
objects measured with different kinds of scales.

To illustrate this, let's return to the discussion question posed earlier about the temper-
ature yesterday and today. You noticed that the temperature yesterday was 800 and
today it is 40'; you conclude that yesterday was warmer. Your neighbor, who has a
Celsius scale thermometer, noticed it was about 27' yesterday and 40 today; she also
concludes that yesterday was warmer.
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This example suggests that it is meaningful to make statements such as 'Yesterday was
warmer than today" regardless of which temperature scale (Fahrenheit or Celsius) we
are using. The intuitive concept of "warmer than" is preserved by measurement in the
numeric concept "greater than" in both scales.

Now consider the more specific question posed earlier. Suppose you answered "yes" to
the question, saying that today (400) is half as warm as yesterday (800). But your
neighbor with the Celsius scale thermometer observed that today (4.49) is only about
one-sixth as warm as yesterday (26.70). Who is correct?

This suggests that it is not meaningful to make statements such as "Yesterday was
twice as warm as today" because the intuitive concept of "twice as warm" is not accu-
rately reflected in the numeric concept "multiply by 2" applied to temperature measures.
Different temperature scales give different results.

What is it about the two scales that make one kind of statement meaningful and
another not? The Fahrenheit and Celsius temperature scales are closely related; there
are simple algebraic expressions relating a temperature on one scale to a temperature
on the other:

9 0C 5 (OF - 32)
5° 9

The relationship between the scales is linear, meaning it is of the form f(x) = ax + b.
This is shown graphically in Figure 3. It is easy to see that what is "warmer" on one
scale is also "warmer" on the other scale; this is because the coefficient a in ax + b is
positive. But it is also easy to see that "twice as warm" does not have the same meaning
on both scales.

406

__0-_ oc•)

s. /!i
Figure 3. Linear relationships of Fahrenheit and Celsius scales

This example suggests that when two scales are related by a linear function (with a
positive coefficient), then "greater than" and "less than" statements should give the
same result (true or false) on both scales. A statement can be considered meaningful if
it gives the same result on both scales.
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Measurement theory allows us to formalize these ideas. First, we can formalize the
relationship between two scales of measurement with this definition:

Definition 5. Let (A, B, p) be a scale, where the set of objects in B is the set of real
numbers. Let the notation p(A) mean the set of all real numbers that are measures of
some object in A. (In mathematics, we call this the range of u.) Then a mapping
t:#(A) -+ B is defined to be an admissible transformation if and only if the triple (A, B,
t oy) is also a scale.

We can interpret this definition as saying that if we have one scale of measure for a
certain kind of object, we can invent other, equally good scales by applying admissible
transformations to the original scale. Thus if we have the Fahrenheit scale for measur-
ing temperature, we can invent the Celsius scale by applying the transformation t(x) =
5/9 x + 160/9. If we have a scale of length in inches, we can invent a scale in centimeters
by applying the transformation t(x) = 2.54 x.

We now have a way of defining the meaningfulness of a statement made about the
measures of objects:

Definition 6. Let (A, B, y) be a scale, where the set of objects in B is the set of real
numbers. A statement about the measures /(a) of objects in A is meaningful if and only
if the truth value (whether it is true or false) of that statement is unchanged after
applying any admissible transformation to y.

This definition requires, for example, that any meaningful statement made about the
length of an object measured in inches should also be true if the object is measured in
centimeters. If we have three boards as shown in Figure 4, then we can make state-
ments such as "Board A is shorter than board B," or "Board B is twice as long as board
C." These statements remain true if we measure the boards in centimeters instead of
inches.

_B

o 12 24 36 48 60 72 inchs

I I I I I 1 1 I I I I I 1 I - 1 I
0 50 100 150 200 cm

Figure 4. Boards measured in inches and centimeters

Measurement Theory for Software Engineers 7



4. Classification of Scales

To finish our brief look at measurement theory, we want to consider the classification of
scales and the kinds of admissible transformations that exist in each class. Throughout
this discussion, we will assume that we are talking about a scale (A, B, p), where B is
the set of real numbers, and transformations t.

Five kinds of scales can be described that are characterized by their admissible trans-
formations:

Nominal scales simply give numeric "names" to objects. (The word nominal is derived
from the Latin nomin, meaning name.) Any numbering is as good as any other, so any
one-to-one function t is an admissible transformation. We have already mentioned one
example of a nominal scale: the jersey numbers of football players. Any numbering of
jerseys is as good as any other (except for other considerations, such as the convention
that certain numbers represent certain positions on the team, or the fact that a 10-digit
number would not fit on all but the very widest of players).

Ordinal scales assign numbers to objects in a particular order, but any numbers that
maintain that order are equally good. Any strictly increasing function t is an admissible
transformation. An example is the Mobs scale for the hardness of minerals. The origi-
nal scale assigned, for example, 1 to talc, 7 to quartz, and 10 to diamond. Years later, a
revised scale was created that assigned 1 to talc, 8 to quartz, and 15 to diamond. The
numbers differed, but the order remained the same.

Interval scales assign numbers to objects in such a way that the interval between two
measure values is meaningful throughout the range of values. Only positive linear
functions t(x) = ax + b are admissible transformations. We have already seen that the
Fahrenheit and Celsius temperature scales are interval scales. A 10-degree difference
between 200 and 300 and a 10-degree difference between 700 and 800 both mean the
same thing with respect to how much heat is required to raise an object's temperature.

Ratio scales assign values in such a way that the ratio of two measures is meaningful.
The only admissible transformations are positive linear functions of the form t(0) = ax.
Length is a ratio scale, regardless of the unit of measurement, because ratio concepts
like "twice as long" are meaningful.

Absolute scales have only one way of measuring objects, and so the only admissible
transformation is the identity t(x) = x. Counting is the most common example of an
absolute scale. Suppose we want to measure the staff size of a software project and
make meaningful statements about the staff size. Counting the people is the obvious
measure. We cannot imagine a transformation t other than the identity transformation
that would make statements like "My project has 5 people on it" and "My project has t(5)
people on it" both true for all 5-person projects.

We should notice that this sequence of scales is increasingly restrictive. For example,
every ordinal scale is also a nominal scale, but not vice versa. Every interval scale is
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also an ordinal scale (and hence a nominal scale), but not vice versa. The relationships
Sam ong the classes of scales is show n in the Venn diagram in Figure 5.

Figure 5. Relationships among classes of scales

5. Applying the Concepts of Measurement Theory

Our brief excursion into measurement theory teaches an important lesson for software
engineering measurement: we should consider the kind of measurement scale we must
have in order to make meaningful statements about our measurements. For example, if
we want to say that one software system is twice as big or ten times as expensive as
another, we need to be sure we have ratio scales for size and cost. If we want to talk
about the average value of some measurements, we must have at least an interval scale.
This lesson can be applied throughout our study of and practice of software engineering.

We can also use these ideas to conclude that it is not meaningful to make the statements
"Today is half as warm as yesterday" and "Football player 64 is twice as good as player
32," because neither temperature nor jersey number is a ratio scale.

Discussion Question 1

For each of the following sets of objects, suggest a measure and scale for those
objects, and identify the class in which the scale belongs (nominal, ordinal, interval,
ratio, absolute).

Mass of physical objects
Loudness of sounds
Brightness of lights
Human intelligence
Beauty of the paintings in a museum
Kelvin scale of temperature
Size of a software system
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Discussion Question I (continued)

Productivity of different assembly line workers
Productivity of different software engineers
Cost of different models of automobiles
Reliability of different models of automobiles
Desirability of vacationing in each of the 50 states of the US
Earthquake intensity
Speed of different models of computer
Uber-friendliness of word-processing or spreadsieet software

Discussion Question 2

The cost of objects is usually regarded as a measure that has a ratio scale; it is
meaningful to talk about one automobile model being twice as expensive as another.
On the other hand, attributes such as the quality of a car or the complexity of a
software system may be measurable only with ordinal scales (or perhaps interval
scales). An engineer is often called upon to make judgments in terms of value, which
we might define as quality per unit of cost. For example, should you pay twice as
much for twice the quality? Should you pay more or less for software that is more
complex? What is "today's best value in a luxury automobile*? When you create a
value measure by combining a cost measure on a ratio scale with a quality measure
on an ordinal or interval scale, what kind of a scale do you get?

Research Question 3

How does the science of thermodynamics allow us to assert that the Kelvin scale of
temperature is a ratio scale and not just an interval scale (like the Fahrenheit and
Celsius scales)?
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Software Engineering Measures

How good is a program? How reliable will a software system be once it is installed?
How much more testing should I do? How many more bugs can I expect to find? How
much will the testing cost? How difficult will it be to maintain a system? How much
will it cost to build a new system similar to one we built five years ago? How long will it
take?

Software engineers face questions like these every day of their professional lives, and
they are difficult questions to answer. Some of them address attributes of software
systems that, conceivably, can be measured directly. Others ask for predictions, and we
usually try to answer these based on trends, or patterns of measurements over a period
of time. In either case, the ability to make appropriate measurements is a fundamental
skill for software engineers.

1. Software Engineering Measures

We are all familiar with the common measures of properties in the physical world:
length, height, distance, weight, speed, acceleration, time, brightness, loudness, electri-
cal current, etc. These and other measures have been used by scientists and engineers
for hundreds of years. It is not so obvious, however, what properties of software systems
can and should be measured.

We can characterize some software measures as static, meaning t]' at they can be
derived from examination of the software itself (usually in the form of source or object
code, or perhaps in terms of a design document). Other measures can be characterized
as dynamic, meaning that they can only be derived from observation of the execution of
the software.

We can also characterize some measures as being basic or directly measurable quanti-
ties, and others as composite, derived, or indirectly measurable quantities. A common
example of a derived measure is productivity, which we define informally as the amount
of something produced in a unit of time. Usually, the amount produced is directly
measurable, as is the time it takes. The mathematical operation of dividing the amount
measure by the time measure gives the productivity measure.

This document is taken from the SEI educational materials package "Lecture Notes on Engineering
Measurement for Software Engineers" by Gary Ford, document number CMU/SEI-93-EM-9, copyright 1993
by Carnegie Mellon University. Permission is granted to make and distribute copies for noncommercial
purposes.
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Computer scientists and software engineers have done a lot of research trying to define
the important measures of software engineering. One of the most significant efforts was
undertaken over the last four years at the Software Engineering Institute (SEI), a
federally funded research and development center at Carnegie Mellon University.
Researchers at the SEI, assisted by more than 60 specialists from industry, academia,
and government, identified four direct measures and several indirect measures that
software engineering organizations can use to improve their software development pro-
cesses. The properties or attributes of software that are directly measurable are size,

effort, schedule, and quality. The results of the SEI research on measures of these prop-
erties are elaborated in Sections 2-4.

Another property whose measure is widely regarded as fundamentally important is
performance, which can be defined in several ways. Clearly, a performance measure is a
dynamic software measure. There are a few other software properties that are gener-
ally believed to be important but which we don't yet know how to measure very well.
Among these are reliability and complexity. Measures of all these attributes are dis-
cussed in Sections 5-7.

Finally, there are other attributes of software that seem important but that we don't
know how to measure at all. These include maintainability, usability, and portability.
Measurement of these attributes is discussed in Section 8.

Because software engineering is such a new discipline, we are struggling not only with
the question of what to measure but also with how to measure. Measurement in the
physical world has evolved to a state where there are well-defined standard units of
measurement for almost everything. There are also standard ways of computing the
composite measures that are accepted within specific branches of science, engineering,
manufacturing, and management.

This is not yet the case in software engineering, although recent work has begun to sug-
gest measurement standards. We will look at the issue of standard ways of measuring
in our discussions of the different kinds of measures.

We expect that computer scientists will continue to make progress in finding ways to

measure software, and that software engineers will continue to make progress in finding
ways to measure the software engineering process, both in terms of basic measures and
derived measures. For a student of software engineering, our best advice is to learn now

to make the measurements that we do know how to make and to watch for new mea-
surements to be developed over the coming years.

All the measures we present in the subsequent sections can and should be studied in
more detail by students of software engineering. Our immediate goal is to introduce the
measures and encourage you to begin using them, even in a limited way, to gain insight
into your own individual and class programming projects. Being able to use these mea-
sures will be important when you become a professional software engineer.
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2. Program Size Measures

Perhaps the most obvious and most fundamental measure of software is program size.
Many questions that software engineers must answer related to costs, schedules,
progress, reuse, and productivity are in some way based on the size of the software
product being built.

The most widely used size measure is a count of source lines of code (SLOC).
Unfortunately, there are as many definitions of what to count as there are people doing
the counting. Some people count executable statements but not comments; some
include declarations while others exclude them; some count physical statements and
others count logical statements. Published information on software measures that
depend on this measure is therefore difficult to interpret and compare.

One SEI report says this about measurement of source code size: "Historically, the
primary problem with measures of source code size has not been in coming up with
numbers--anyone can do that. Rather, it has been in identifying and communicating
the attributes that describe exactly what those numbers represent."

What is needed is a way of adding precision to software size measurements. Remember
that precision is an indication of the repeatability of a measurement. If several people
are asked to measure the size of a program, we would like them all to measure the same
things and get the same answer.

The results of an experiment illustrate this point. The C program shown in Figure 1
was given to about 80 people, and they were asked how many source lines of code are in
the program. Figure 2 shows how many votes each of the possible answers received.

#define LOWER 0 /* lower limit of table */
#define UPPER 300 /* upper limit */
#define STEP 20 /* step size */

main() /* print a Fahrenheit-Celsius conversion table */
{

int fahr;
for (fahr=LOWER; fahr<=UPPER; fahr=fahr+STEP)

printf(0%4d %6.lf\n", fahr, (5.0/9.0)*(fahr-32));
I

Figure 1. C program used in the measurement experiment

The precision of a measurement of source lines of code does not depend on the numbers
used in counting (everyone agrees to use the nonnegative integers), so it must depend on
what we choose to count. A comprehensive definition of what kinds of statements or
constructs in a program to count is necessary before precise measurement is possible.

0
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Figure 2. Results of the experiment

Class Exercise

A fragment of a Pascal implementation of a binary tree search algorithm is shown
below. Count the number of physical lines of code and the numbe of logical lines of
code. Collect these counts from all class members and then plot the results as two
histograms (as in Figure 2).

repeat
if tree = nil

then
finished := true

else
with tree^ do

if key < data
then

tree := left
else if key > data

then
tree := right

else
finished = true

until finished;

2.1. What Can We Count?

The SEI research on software measures led to the creation of checklists for software
engineers to use in defining software measures. The checklists provide a way of defin-
ing exactly what is to be counted and reported. An excerpt of the checklist for source
statement counts is shown in Figure 3. Your instructor has a copy of the complete
checklist.

The first thing to notice in this excerpt is the measurement unit, which is either physi-
cal source lines or logical source statements. The choice is indicated in the box at the
top. Then to define a particular size measure, we simply check in the appropriate
column whether to include or exclude a particular statement type from the count. The
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Definition Checklist for Source Statement Counts

Definition name: Physical Source Lines of Code Date: 817/92

Originator: SEI

Measurement unit: Physical source lines

Logical source lines I
Statement type Definition [•J Data array U Includes Excludes

When a line or statement ccnitains more than one 4Wp,
classify it as the ty"e with the highest precedence.

1 Executable Order of precedence -> 1 V
2 Nonexecutable
3 Declarations 2
4 Compiler directives 3 V _

5 Comments
6 On their own lines 4 V
7 On lines with source code 5 V
8 Banners and nonblank spacers 6
9 Blank (empty) comments 7 V

10 Blank lines 8 V
11
12
How produced Definition _ Data array Includes Excludes
1 Programmed 6e _

2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified V_
6 Removed V
7
8

Figure 3. Portion of the SEI definition checklist for source statement counts

example in Figure 3 indicates that we should count executable statements, declarations,
and compiler directives, but not comments.

Notice also that some programming languages allow more than .ne kind of statement
on a line. If we are counting physical source lines, then whether or not to count a line
may be ambiguous when there are two or more kinds of statements on that line. The
checklist solves this problem by allowing us to specify a precedence of statement types
(the boxes just to the left of the "Includes" column). When a line contains two or more
statement kinds, we count it if the highest precedence statement is specified as
included.

An important observation is that different kinds of measures are needed for different
purposes. For example, when planning project costs, a software engineer may want to
treat new code differently from reused code-new code probably costs a lot more to
develop. Similarly, code written for the developers' own use and never delivered to the
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Attribute class Describes and distinguishes

statement type executable and nonexecutable st-tements, and if a statement is a
declaration, a comment, a compiler directive, or a blank line

how produced code programmed by a software engineer, created by source code
generation tools, converted from another program or language by an
automated translator, copied or reused unchanged from another
program, modified from a previous version of the same program, or
removed from a previous version

origin new work (no prior existence) and prior work; source of prior work,
such as a previous version of the program, a different program, a
commercial program library, a reuse library, etc.

usage code that is part of the primary product, or is external to or in support
of the primary product

delivery code is to be delivered (either as source code or object code), or it is
only used internally

functionality operative or inoperative (meaning unused, unreferenced, or
inaccessible code)

replications code that may be replicated in the final delivered product, such as
code that is copied, expanded, or instantiated during compilation and
linking, or code that is replicated during installation (such as in a
distributed system)

development where the code is in the development process: planned, designed,
status coded, unit tests completed, integrated into components, etc.

language programming language used; for example, a software engineer may
want to distinguish code in assembly language from code in a high-
level language

Figure 4. Source code attribute classes

customer, such as a little program that generates test data, may need to be counted
separately from the delivered product.

To account for all the different uses of software size measures, nine different, indepen-
dent classes of attributes of statements in programs have been identified. For each size
measure, we must specify whether or not to count source lines in those attribute classes.
Figure 4 contains brief definitions of the classes.

For different programming languages, there may be special cases to be considered in
defining how to count statements. The complete checklist includes space to list clarifi-
cations to the general rules of what to include or exclude in a measure of source lines of
code.

To help ensure precise measurement, the SEI checklist has been designed so that when
source statements are counted, each statement or physical line has exactly one value
per attribute. For this to happen, values within an attribute must be both mutually
exclusive and collectively exhaustive.
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2.2. What Should We Count?

Although the use of the statement count checklist allows us to be very precise in what
we measure, there are literally thousands of different ways of filling out the checklist to
define a particular measure. Which should we use?

The SEI has recommended that the simplest measure, physical source lines, is perhaps
the best measure at this time. In the future, some of the more complex measures may
prove useful; but right now, we simply do not know how to get more value from the
complex measures than from the simplest one.

Counting physical lines is almost as easy as counting carriage return characters in the
source code. It is also almost independent of the programming language. Automated
tools that count physical lines are usually much simpler than tools that count logical
statements. Furthermore, if a software organization has a relatively uniform pro-
gramming style and commenting style (sometimes enforced by coding standards), there
may be a strong relationship between the physical line count and the logical statement
count.

Discussion Question 1

As an alternative to the simple process of counting carriage returns, some organiza-
tions suggest the equally simple process of counting semicolons (in languages like
Pascal, Ada, and C). Discuss the adequacy of such a measure, using the Pascal code
fragment in the class exercise above (page 4) as an example.

Class Exercise

We have seen that it is easier to measure physical lines of code than logical lines of
code in a program. If there is a strong mathematical relationship between the two
mieasures, then we can make the easy measurement and use it to get a fairly good
estimate of the other measure.

To test this hypothesis, first use the size definition checklist to define physical lines
of code and logical lines of code. Then each member of the class should make the
measurements for a few of his or her own programs. Plot the relationship between
the two measures. Is it linear? If you are familiar with curve-fitting techniques, use
them to establish a mathematical relationship between the two measures.

3. Effort and Schedule Measures

The next fundamental software measures we want to examine are effort and schedule.
Reliable measures for effort are prerequisites for reliable measures of software cost.
The principal means we have for managing and controlling costs and schedules is
through planning and tracking the human resources we assign to individual tasks and
activities.
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Good measurement of effort, combined with good measurement of software size, can give
us a variety of measures of productivity, which in oversimplified terir, 3 is the amount of
product divided by the amount of effort. Effort and size measuremeiuts, when collected
on several projects over a period of time, provide the data needed to calibrate a cost
estimation modei. Suchi a model is another valuable tool for software engineers, one
that you will examine in detail later in your studies.

3.1. Effort Measures

Some of the most common units of measurement of effort are labor-month (sometimes
still called man-month), staff-week, and staff-hour. The SEI recommends the last of
these as the best unit, citing two main reasons. First, the length of a month or a week is
not well defined because of different company practices, vacations, overtime, and other
factors. Second, because a goal of effort measurement is to help organizations improve
their software development process, tracking individual activities at the week or month
level does not give detailed enough information about the process.

Precise measurement of effort is facilitated by using a checklist to define exactly what
kinds of effort should and should not be counted. A portion of the SEI checklist is shown
in Figure 6. Your instructor has a copy of the complete checklist.

The effort checklist, like the size checklist, is structured in sections defined by different
classes of attributes. Those classes are defined in Figure 5.

Attribute class Describes and distinguishes
type of labor direct and indirect labor: labor costs that can be charged directly to

the project or contract, and those that cannot
hour information regular or overtime work, and salaried or hourly workers
employment class regular company employees, whether full-time or part-time, and

employees brought in to work on a specific project task, such as
consultants and subcontractors

labor class workers by the types of work they do: managers at various levels,
analysts, designers, programmers, documentation specialists, support
staff, etc.

activity software development activities and maintenance activities

product-level functions of software development, such as design, coding, testing,
functions and documentation; organized by major functional element, by

customer release, and by system

Figure 5. Effort attribute classes

The checklist serves two separate but related purposes. First, by placing check marks
in the columns titled 'Totals include" and "Totals exclude," we can produce a definition
of what is being counted. Second, by placing check marks in the column titled "Report
totals," we can define the content of a specific effort report. Different reports will be
needed for different purposes: we may want separate reports for effort expended on
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Staff-Hour Definition Checklist
Definition Name: Total System Staff-Hours Date: 7/28/92

for Development Originator:

Page: 1 of 3

Totals Totals Report
Type of Labor Include exclude totals

Direct e'
Indirect

Hour Information
Regular time _ _'

Salaried _ _

Hourly I

Overtime ___

Salaried _____

Compensated (paid) __

Uncompensated (unpaid) _ /

Hourly _ _ ___ _________
Compensated (paid)
Uncompensated (unpaid)

Totals Totals Report
Product-Level Functions continued Include exclude totals

System-Level Functions V
(Software effort only)
System requirements & design

System requirements analysis _/

System design __

Software requirements analysis_..____
Integration, test, & evaluation

System integration & testing _'

Testing & evaluation _ _

Production and deployment _

Management
Software quality assurance __

Configuration management _ _

Data _

Training
Training of development employees
Customer training V _

Support _ '

Figure 6. Portion of staff-hour definition checklist

design or on testing, or we may want a report on overtime needed or on the effort of
contract employees or consultants.

Discussion Question 2

Look carefully at the complete SEI effort reporting checklist (available from your
instructor). How many of the different activity attributes and product-level function
attributes do you recognize as applicable to your own class programming work? How
would you measure your own work in each of the applicable categories?
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Class Project

Use the checklist to define precisely the effort measures to be made and reported for
a large class programming project. Choose one class member to be the project
administrator, who is responsible for organizing and reporting the measures.
Design a schedule and a reporting system through which each class member makes
and reports his or her own personal effort measures.

At the end of the project, determine project costs associated with major functions
such as requirements analysis and specification, design, coding, and testing. Use a
typical figure of $50 per hour to determine the total value of your product to your
customer.

3.2. Schedule Measures

Although software engineers are routinely asked to provide information to be used in
the creation and tracking of project schedules, most scheduling tasks are the responsi-
bility of engineering project managers. For that reason, we will present only a brief
discussion of schedule measures.

The SEI recommends that software project managers adopt structured methods for
defining two aspects of schedules and reports: the calendar dates (both planned and
actual) associated with project milestones, reviews, audits, and deliverables; and the exit
or completion criteria associated with each date.

An all-too-common error in designing schedules is to choose the wrong kinds of mile-
stones for a project, especially those for which the completion criteria are difficult or
impossible to identify. For example, even if we have a good estimate of the size of a
piece of software under development, we should avoid choosing a milestone such as
"code 50% written" to be met halfway through the allotted time for the project. It is
unlikely that we will be able to recognize when the code is half written; and, if we can, it
is not uncommon to discard some of that code later because of unforeseen problems.
Also, we have all experienced the phenomenon of the last 10% of the code requiring as
much time to complete as the first 90%.

Examples of good completion criteria for software project milestones include:

"* internal review held

"* formal review with customer held

"* all action items closed

"* document entered under configuration management

"* system delivered to customer

"• customer comments received

"• changes incorporated

"* customer sign-off obtained
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4. Quality Measures

For many engineered products, the quality of the product depends to a great extent on
the quality of the raw materials and the quality of the machines used in the manufac-
ture of the product. This is not the case with software. In fact, recent research suggests
that the most important factor in achieving quality in a software product is the quality
of the software process used to create that product.

There are many aspects of the software process that an organization might want to
improve in order to produce better products. Underlying any process improvement
effort is the idea that we must be able to recognize improvement when it happens, and
this requires measurement.

Many modern definitions of quality are based on two fundamental ideas: freedom from
defects and suitability for use. These ideas suggest the most basic quality measures we
should adopt: counts of defects and problem reports. If used carefully and repeatedly,
these measures will exhibit trends that provide insight into a wide range of opportuni-
ties for software process improvement. They are also among the very few direct
measures we have for software quality, and they are the basis for quantifying other
software quality attributes such as reliability, correctness, completeness, efficiency, and
usability.

To facilitate precise reporting of defects and problems, the SEI has produced a problem
count definition checklist. A portion of this checklist is shown in Figure 8. Your
instructor has a copy of the complete checklist.

The problem count definition checklist, like the size checklist, is structured in sections
defined by different classes of attributes, as defined in Figure 7.

Attribute class Describes and distinguishes
problem status points in the problem analysis and correction process: open or closed;

recognized, evaluated, or resolved

problem type software defect or other kind of problem (hardware, operating system,
user mistake, operations mistake, new requirement, enhancement);
for a software defect, whether it is a defect in requirements, design,
code, operational document, test case, etc.

uniqueness new and unique defect, or a duplicate of another reported defect

criticality degree of disruption to a user when the problem is encountered

urgency degree of importance given to the evaluation, resolution, and closure
of the problem

finding activity the activity that uncovered the problem, such as synthesis, inspection,
formal review, testing, customer use

finding mode operational or non-operational environment where defect was found

* Figure 7. Defect attribute classes
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Problem Count Definition Checklist
Software Product ID [Example V1 R1] Page 1
Definition Identifier: [Problem Count A] Definition Date [ 01/02/92]
Attributes/Values Definition [ j Specification [ X i
Problem Status Include Exclude Value Count Array Count

Open V __ _

Recognized _

Evaluated ...... V
Resolved ______,.

Closed _ _ V _

Problem Type Include Exclude Value Count Array Count
Software defect _ .... _________

Requirements defect ... ____._.___....

Design defect V V V
Code defect V
Operational document defect _ • V
Test case defect V_
Other work product defect V _

Other problems . ._.._.
Hardware problem V _ _

Operating system problem
User mistake V _

Operations mistake
New requirement/enhancement V_

Undetermined - __..... _ _

Not repeatable/Cause unknown _/

Value not identified V
Uniqueness Include Exclude Value Count Array Count

Original __

Duplicate Vb V'
Value not identified V6 I

Figure 8. Portion of the problem count definition checklist

As we have seen before, this checklist has "Include" and "Exiude" columns to specify
precisely what characteristics of defects and problems are to be '!ounted. The result of
counting problems according to the attributes included and excludc.d is a single number,

the total number of problems.

The column titled "Value Count" is used to specify other values that are to be reported.
For example, in Figure 8, check marks in this column appear in the rows for open and
closed problems; requirements, design, code, and operational document defects; and
duplicate problems. Each of these values should be reported separately, in addition to
the total number of problems. Notice that this means that duplicate problems are not
included in the total, but they are reported separately.

The last column is titled "Array Count." Check marks in this column identify multi-
dimensional arrays of counts that should be reported. For example, in Figure 8 there
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are check marks in this column for two attributes in the problem status class (evaluated
and resolved), and check marks for three attributes in the problem type class (design,
code, operational document). This means that we want a report that contains two
columns and three rows, with cells containing the count of problems with each of the six
possible pairs of attributes (evaluated design defects, resolved design defects, ... ).

Use of this checklist allows an organization to define precisely what defects and prob-
lems are to be counted and reported. This data can then be used to identify trends and
to help improve the organization's software process.

Discussion Question 3

You have probably used a variety of commercial software packages such as word
processors, spreadsheets, drawing programs, or games. You have also probably
encountered a situation where the behavior of the program was not what you
expected. In such situations, how can you determine whether the problem is a user
mistake, an error in the user manual, or an actual error in the program? How much
does the answer to the previous question matter to the user? To the software engi-
neers who must resolve the problem?

Have you ever heard a programmer say, "That's not a bug, it's an undocumented
feature!"

5. Performance Measures

Performance is an important attribute of many engineered products or systems. Two
familiar examples are the performance of our cars ("0 to 60 in 8.9 seconds") and our
computers ("2.5 million instructions per second"). These illustrate the two most com-
mon kinds of performance measures: response time, or how long it takes to accomplish a
particular task, and throughput, or how many tasks can be completed in a unit of time.

Discussion Question 4

What are some other everyday examples of performance measures? What kinds of
performance measures might be important to the designers and users of a long-
distance telephone system, an airliner, an automatic banking machine, a washing
machine, a water heater, or the food preparation equipment at a fast-food restau-
rant? Are these measures of response time, throughput, or something else?

The ability to quantify and to measure software performance is an important tool for
software engineers. First, it gives us a way to state system requirements more
precisely. For example, we can require that a compiler be able to compile 2,000 lines per
minute, a word processor be able to scroll a full page of text in one second or check the
spelling of 500 words per second, or a computer game be able to move the animated
figures as fast as the refresh rate of the display screen (typically 1/60 second). Without
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the ability to measure performance, we might be tempted to accept requirements such
as "the system must be efficient" or "the system must be as fast as possible."

Second, if we can measure software performance, we can demonstrate that our system
satisfies quantitative performance requirements. Suppose you are developing a system
for a customer, and your contract says you don't get paid until you demonstrate that the
system complies with the requirements specification. Would you rather try to demon-
strate that it can compile 2,000 lines per minute or that it is as fast as possible?

There are two basic performance measurement techniques. The first, called event
recording, identifies events that are important to system performance and then records
when they happen. For example, suppose we want to measure the time between a
user's keystroke and the appearance of the corresponding character on the screen.
(Note that this is a response time measurement.) To make this measurement, we can
add some event-recording code to our system. At the point where the keystroke is first
recognized (often via an interrupt handler), we record the time from the internal system
clock. At the point where the routine that actually modifies the pixels of the screen
display completes the drawing of the character, we get another reading from the sy.tcm
clock. The difference between the two times is recorded in a database. A series of
recorded events gives us the data to determine minimum, maximum, and average
response times.

This approach to event recording is commonly known as instrumenting the code. The
parallel with other engineering measurement is clear: mechanical engineers often use
mechanical instruments to measure mechanical systems; electrical engineers use elec-
tronic instruments to measure electronic systems; software engineers use software
instruments to measure software systems.

The second performance measurement technique is called monitoring. It is usually a
sampling technique: at regular intervals we record appropriate data on the state of the
system. For example, we may be interested in identifying performance bottlenecks in a
system-is too much time spent waiting for input and output requests to complete, or in
computation, or in allocating and freeing dynamic storage, or somewhere else? Rather
than trying to instrument the whole system and record every event, we can incorporate
a sampling monitor that records, at regular intervals, the value of the computer's
program counter. We choose the interval to be long enough that the monitoring does not
interfere with the running of the system, but short enough to be sure that the important
routines cannot run to completion between sampling measurements. Analysis of the
resulting data can give a good picture of where the system spends its time.

Another kind of monitoring, hardware monitoring, is often used in real-time control
systems. These systems commonly receive signals from various sensors and then send
signals to effectors that perform an action. For example, in a fly-by-wire aircraft control
system, movement of the control stick or yoke by the pilot results in a signal to the
control system (hardware and software). The software must interpret that signal and
send an appropriate signal to the aircraft flight control surfaces (such as the ailerons
and elevator) within a specified amount of time (usually measured in milliseconds).
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Because the input and output signals exist outside the controlling computer, an elec-
tronic probe can be attached to the wires carrying those signals. The response time (the
time between input signal and output signal) can be measured directly with an appro-
priate instrument, such as an oscilloscope.

Software performance measurements usually should be viewed as a kind of experiment,
rather than as an absolute measure. This is because the performance of a system
almost always depends on the inputs to the system at the time the measurement is
made. In fact, we often qualify a measurement with phrases like average, peak load, or
worst case to indicate the conditions under which the experiment was conducted.

A particularly important kind of measurement experiment is called a benchmark. It is
conducted using a specific, carefully chosen set of inputs. Those inputs must be repre-
sentative of the inputs that the system will receive in normal use, and they must be
reproducible. This allows us to conduct the experiment many times to determine
performance differences resulting from design or implementation changes in the system.

One of the most common uses of benchmarks is to compare performance of different
models of computer systems. Using one or more carefully designed and reproducible
computational tasks, we can conduct experiments and make quantitative statements
about the relative performance of the different systems.

Discussion Question 5

What kind of measurement technique could be used to demonstrate that a word pro-
cessor can check the spelling of 500 words per second? What other response time
and throughput measures might be appropriate for word processors?

Discussion Question 6

In retail stores, cash registers have given way to point-of-sale terminals that are
connected to one or more computer systems. Many of these terminals have the
capability to read the magnetic encoding strip on credit cards, contact the credit card
company, and get purchase authorization with just a single keystroke. What kinds
of performance requirements might you expect if you were asked to design the
software system that performs purchase authorization? Which are response time
requirements and which are throughput requirements?

6. Reliability Measures

The reliability of a system, software or other, is often extremely important to the user of
that system. The lack of reliability cannot be tolerated in a safety-critical software
system, such as the control system for a nuclear power plant or the flight control soft-
ware of a modern airliner, where a failure can result in loss of life. Thus it is important

Software Engineering Measures 15



for a software engineer to be able to state quantitative reliability requirements and to
demonstrate that those requirements have been satisfied.

Software reliability cannot be measured directly. It is generally inferred or computed
from other measures of the behavior of the software. Some ideas from the other engi-
neering disciplines suggest how we might measure it.

Many physical systems, such as machines, are subject to "wear and tear" or physical
degradation of moving parts. After a period of time, a part may be unable to perform its
function and need to be replaced. A common measure of how long the system can oper-
ate between failure of a critical part is "mean time between failures" (MTBF), which is
the average of the times between successive failures. Notice that this is a statistical
measure rather than a direct measure. We sometimes can compute the MTBF by
observing the system over a long period of time. For some systems, we can also do
component testing to determine the MTBF for each component and then use statistical
techniques to predict the MTBF of the entire system.

If we have good MTBF data, we can design a preventive maintenance schedule that
anticipates failures and replace the parts before the failure occurs.

A similar measure is "mean time to repair" (MTMR), which is the average amount of
time it takes to repair the machine after a failure. Many machines are designed with
parts or modules that can be quickly exchanged; the design goal is to minimize MTTR.
Not surprisingly, such a design goal has application in software engineering.

Engineers also compute the availability of a system, which is the percentage of time
that the system is ready for use. It can be computed from MTBF and MMLR as:

MTFR
availability =1 - M x 100

'. MTIR + MTBF)

Discussion Question 7

Issues of reliability and availability sometimes strike very close to home when the
system involved is our car. Which components on a car seem to have a low MTBF?
High MTBF? Of these, which have high and low MTTR? What parts or components
of a car are usually involved in preventive maintenance? Are these the same as the
ones you identified as having a low MTBF?

Software does not have parts that wear out, and it is not usually the case that the user
of the software can pull out a faulty module and slide in a good one. Still, the basic
ideas of reliability and availability are important to software engineers and software
users.

We generally define software reliability as the probability that the software will perform
its task under stated conditions for a stated period of time. When the software does fail,
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it is not because a part has worn out, but because it has encountered a set of conditions
or input values that it cannot handle correctly. So to determine the reliability, we need
to know the probability that the user will give the system inputs that cause failure.
This means we need to gather statistics on the use of the software as well as the soft-
ware itself. Statistics on the patterns of use of the software is called an operational
profile.

Statistics of this nature are used in a variety of ways by software engineers. In
requirements analysis, you may be able to identify potential requirements that, in fact,
will never be needed by the user. During testing, in order to reach a desired degree of
reliability, you can devote a lot of time to testing features that will be heavily used and
little time to testing features that are rarely used.

The ability to measure or predict reliability serves three general purposes in software
engineering. First, it allows us to understand and make tradeoffs between reliability
and other software characteristics, such as performance, cost, and schedule. Second, it
can allow us to track progress during software testing;, this is useful both for recognizing
when we have done enough testing and for predicting when the testing will be com-
pleted. Third, as with many software measures, it allows us to determine the effect of
using new tools or methods to develop software.

Detailed discussion of software reliability requires a good knowledge of statistics and
mathematics, so we will not try to cover it here. It is an increasingly important topic,
and we recommend that it be included in the education of all software engineers.

Discussion Question 8

Computer scientists have expended much effort in pursuit of program correctness,
which we define informally as the equivalence (in some mathematical sense) of the
requirements specification and the code. You may have studied the various methods
that have been developed to do proofs of correctness.

Software engineers might suggest, "Correctness is a red herring; it is unachievable
and unnecessary. Reliability is much more important."

Consider a software package that you use frequently, such as a word processor or
compiler. Suppose you have experienced 100% reliability of the software under the
conditions of your use, although there are known defects in parts of the software you
never use. Technically, the software is incorrect, but to you it is perfectly satisfac-
tory. Which is more important? Which costs more to achieve?

Suggest arguments on both sides of this issue. You may want to distinguish correct-
ness at the module level from correctness at the system level. Consider also the
question of whether a requirements specification can be shown to be correct.

Do you detect a fundamental difference between the philosophies of computer
science and software engineering in this discussion?
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7. Complexity Measures

Two important facts of software engineering are that software systems evolve over time
and that making that evolution happen requires expenditure of resources. To minimize
the costs, we would like to have software that can easily evolve in desirable ways.
Computer scientists and software engineers have been working for years to figure out
how to make this happen.

One step in the process was the recognition that some programs are easier to change
("maintain") than others. If there were some way to measure maintainability, these
programs would get a high measurement. However, we could not find a direct measure
of maintainability.

The next step was the recognition that these maintainable programs tended to be easy
to understand. This quality made it simpler for maintenance programmers to design
and implement changes. If there were some way to measure understandability, these
programs would get a high measurement. However, we could not find a direct measure
of understandability.

Then it was suggested that understandability seemed to be related to an abstract qual-
ity called complexity, which may be a structural attribute and might be measurable
from source code. Although the connections from complexity to understandability to
maintainability to lower cost are somewhat tenuous, researchers have been inventing
complexity measures with great energy. To date, more than 100 such measures have
appeared in the computer science technical literature.

Complexity measurement is an interesting example when we consider the questions of
what can be measured and what should be measured. Many of the suggested complex-
ity measures can be measured quite easily by running the source code through a
measurement tool. Many of them are inherently interesting, especially to scientists,
who are usually interested in discovering new facts. Unfortunately, they are much less
interesting to engineers, who want to build better products and reduce costs.

The ideal situation might be to have complexity (or understandability or maintainabil-
ity) measures that could be applied very early in the development process, so that the
resulting system could be maintained economically. So far, we do not know how to use
any of the 100 complexity measures to do this.

If we can't guarantee low maintenance costs, the second best situation would be to be
able to predict what the maintenance costs will actually be. Having confidence in our
maintenance cost estimates allows us to make competent decisions about when and
whether to revise a software system. That is much better than making the commitment
to revise a product and then discovering that it costs ten times as much as we thought.

Currently, we don't yet know which of the 100 complexity measures is a good predictor
of maintenance costs. We hope that ongoing research will change this situation.
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8. Other Software Measures

Software engineers have identified a number of other properties or qualities or
attributes of software that seem to be desirable but that we curr,.Itly have no way of
measuring. Figure 9 lists some of these. Because of many of their names, these proper-
ties are often referred to as the ilities (pronounced like "ill at ease," which describes our
emotional state when asked to measure them).

Accessibility The extent to which software faciLtates selective use or
maintenance of its components

Adaptability The ease with which software allows differing system
constraints and user needs to be satisfied

Compatibility The ability of two or more systems to exchange information

Fault tolerance The built-in capability of a system to provide continued correct
execution in the presence cf a limited number of hardware or
software faults

Integrity The extent to which unauthorized access to or modification of
software or data can be controlled in a computer system

Interoperability The ability of two or more systems to exchange information and
to mutually use the information that has been exchanged

Maintainability The ease with which software can be maintained

Portability The ease with which software can be transferred from one
computer system or environment to another

Reusability The extent to which a module can be used in multiple
applications

Robustness The extent to which software can continue to operate correctly
despite the introduction of invalid inputs

Testability The extent to which software facilitates both the establishment
of test criteria and the evaluation of the software with respect
to those criteria

Figure 9. Some unmeasurable attributes of software

Discussion Question 9

Although we cannot measure the ilities directly, we may have strong intuition that
certain measurable attributes are closely related to one of them. For example, we
may design software so that all the system-dependent information is encapsulated in
a single module. To port the software to a different computer system might then
require recoding of only that module. We could argue that, intuitively, the number
of modules that use system-dependent information is a measure of portability.

Suggest other measures that you believe intuitively are related to the unmeasurable
ilities.
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Classroom Materials

Transparency Masters

From "Introduction to Engineering Measurement"
Metric System (Figure 1)
Discussion Question (5)
Discussion Question (11)

From "Measurement Theory for Software Engineers"
Definitions (measure and metric)
Metrics (Figure 1)
Overcoming the Intelligence Barrier with Measurement (Figure 2)
Definition (relational system)
Definition (scale)
Definition (admissible transformation)
Definition (meaningful)
Meaningful Statements (Figure 4)
Discussion Question (1)

From "Software Engineering Measures"
Counting Lines of Code (Figures 1 and 2)
Class Exercise: How Many Lines of Code?
Definition Checklist for Source Statement Counts (Figure 3)
Staff-Hour Definition Checklist (Figure 6)
Problem Count Definition Checklist (Figure 8)

Software Measure Forms for Duplication
Definition Checklist for Source Statement Counts (4 pages)

Staff-Hour Definition Checklist (3 pages)

Problem Count Definition Checklist (2 pages)



U.=
E

C

=L M N 0c'

.0

BE a
' " - E r. E . (U N >%

T" I I I I C Cx

.5

EE

0
U) I) xx U E 'i L4)N



E 2X0 cc 0
w -

cc o~ Ccc0 E
C0 0I ow c

40 .2 I
0 Cc

0 0

0X 0 0 0

U-E (% E 0

00EE
~g 10 0

*~ 0 >

0 C0

0) U. X Cc
0. 00

0o cL0 0 Cc

0 0 00
0 ~ Vx 0 0

u. Em



06

0

00

0 Lm
00 0 _L

cuw

ow 'E -0 0 L
(A~0 (J o) 0 c

am 04 CL

C c >%

0U 0 >2

~ 0 E 0

C r- 0 w 0*0 m

0 C

0~ U 0 .o ý om = P%

0M 0

U)L 2U(U Lm'hm
U~~L MOM~~uc~uu

0 v*ea



CY

0)o

_ 
Cb

(I0 N

0E 0 0

0E0C FA

4)0 0

0m cu *0

000c

,im0 CODU

0. E

00 M0'
o4



N

CMU

0 C

0-%0

C-'

El 1:E

00 D D

m LZJII DD1 LEIJD!

U,



5--

0 Sm

cc 0 9=061

0 L0O smc
00

0 0).z 0~
MIMES

(1) sU

Lu. E

0 a

0 )

4 0) -

00

0h mc

0 OE



0. uJ0

0. 0

ol 8000
CISC

cc m

U)I :0c
MINE

qI w m'INI a

0) .a
MINS M - 80 00

IIIM ft-a %.,

a)) 01%

* o ca)



w
U- w

cc

ammo CUam

U 0 IrS

Isoft

~~mMh~O N#) 00% sf

U'~ It  C II

00

arm 4).2
o cc

73 C =1



4) LoL 0 4i

0 0 Cc m

0 4)

S"0"O

.c .(2 :D " I: €

U 0 0 0

cc. 0 cc m 4~• o
am U) 0 0o w w E= ,• "E

.-- v "-- • h

S C• • •.tMOO



CcC

Cz 0

E~ _)
0

~-ww

0(u -w Ea'a-. U) Ucc Im m...
UCc

oo

-W 0.

:IL% 0 ( m
U) a."E

.2 ~~ u)o

Uv 
Cc'.



0402 f

0 0

* C

ED

co

C*

E

0 °

In
co-

75 0

C ~O

CC

• *•



c5cc

0

00

~uow

00

0040

I %M ___M BINUM 4)
0~~u 000%- MM

4 Oa) M oa
0 s o IM

C saa DMO.) obof0a

a) > I a

uL E (r.-



•C

4)

0 Low( " " . ... 
C0 

0,

0 0

_,= ~.._ U)

SM.M -.0: • • .-

( I0 0i000 i m O W

ur

0 e0
00

ft~~ 0 UNa) 0.00 'B' 'oo 0..
0 0 0 C" 0 a)

0 ~~ 0 ) U _WOMENU) S
00 u"UME)

0 om mf 00o
'4) t E m

0 *No LoEMMS4 ) 4) 0
.2 m0 a rU. 4) r.0) SMR 4) 0 6NOWN ROM

4U) U g -0 "0*
lowU.s . MEMO 0 BOE".r :o %- 40 0 m *E-0 "



CID

I-SO

CD

c

*00
(cc

0 E LICfJ 0

0 0

0""E "I

E..0U 110

Ln

0I
INNE 8100 UJ'

cc
o 0 CV)

001 0 m0 9
o U.c C

0 CL 'IE CL_____a) n~m mm%) a

C C

*00 C
momo R (U

**E



e3
I.U
sw
0

go

0S
C

c m c

III

0

o U,

0

(II)
0A

cc 4)

0 0) II

oi 2cc



Definition Checklist for Source Statement Counts

Definition name: Physical Source Linas of Code Date:

Originator: SEm .
Measurement unit: Physical source lines [

Logical source lines

Statement type Definition V Data array L Includes Excludes
When a line or statement contains more than one type,
classify it as the typ with the highest precedence.

1 Executable Order of precedence -I j ..
2 Nonexecutable
3 Declarations 2
4 Compiler directives 3
5 Comments
6 On their own lines 4
7 On lines with source code 5

Banners and nonblank spacers 6 t_
Blank (empty) comments 7

Blank lines 8 V4

How produced Definition LJ Data arrayL_. Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators V'
4 Copied or reused without change _ _

5 Modified
Removed V

Software Engineering Measures: Figure 3



Staff-Hour Definition Checklist
Definition Name: Total System Staff-Hours Date: 7/28192

for Development Originator:

Page: 1 of 3

Totals Totals Report
Type of Labor Include exclude totals

Direct __

Indirect

Hour Information
Regular time

Salaried _

Hourly

Overtime
Salaried ,.,_,

Compensated (paid)
Uncompensated (unpaid) _ _

Hourly
Compensated (paid)
Uncompensated (unpaid)

Totals Totals Report
Product-Level Functions continued Include exclude toa

System-Level Functions oe
(Software effort only)
System requirements & design

System requirements analysis
System design _l_

Software requirements analysis
Integration, test, & evaluation

System integration & testing _/

Testing & evaluation
Production and deployment
Management __

Software quality assurance
Configuration management _f'

Data _ _

Training ..
Training of development employees V _

Customer training _ __

Support _ _

Software Engineering Measures: Figure 6



Problem Count Definition Checklist
Software Product ID [Example VI R1] Page 1
Definition Identifier: [ Problem Count Al Definition Date [01/02192 1
Attributes/Values efinitin 1cfati
Problem Status Includ Exclude u ounA Coun

Open V _/

Recognized ___."____

Evaluated _____-_ _________

Resolved _ _____. ____1_'

Closed V __

Problem Type Include Exclude Value Coun AM Coun
Software defect ",____.

Requirements defect
Design defect e V
Code defect
Operational document defect .. ' V 4
Test case defect
Other work product defect _ __

Other problems
Hardware problem V
Operating system problem
User mistake
Operations mistake
New requirement/enhancement _ _

Undetermined _____,__ _ _-

Uniqueness Include Exclude Value Coun Ar Coun
Original 

t" _ _ _

Duplicate _ _

Value not identified __

Software Engineering Measures: Figure 8



Definition Checklist for Source Statement Counts

Definition name: Date:
Originator:

Measurement unit: Physical source lines •

Logical source linesR

Statement type Definition t__J Data array I~ Iincludes Excludes
When a line or statement contains more than one type, .................•••••.< !..••••:•-
classify it as the type with the highest precedence.• o•:.. .:--••"-::••.:• ! ......... ........:• '

I Executable Order of precedence -* 1
2 Nonexecutable Tom
3 Declarations
4 Compiler directives 3
5 Comments
6 On their own lines 4
7 On lines with source code 5
8 Banners and nonblank spacers 6
9 Blank (empty) comments _7

10 Blank lines 8
11
12
How produced Definition I Data array Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Origin Definition LiJ Data array U Includes Excludes
1 New work: no prior existence
2 Prior work: taken or adapted from i m sm
3 A previous version, build, or release
4 Commercial, of-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14
Usage Definition Li Data array Li Includes Excludes
I In or as part of the primary product
2 External to or in support of the primary product
3

1



Definition name:_ _

Delivery Definition • Data array I Includes Excludes
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Functionality Definition Lj Data array Li Includes Excludes
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed) 7 -
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Replications Definition Lj Data array Li Includes Excludes
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates-as in distributed, redundant,

or reparameterized systems
5

Development status Definition i _ Data array Li Includes Excludes
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System test completed
9

10
11
Language Definition Lj Data array Li Includes Excludes

List each source language on a separate line.

2 Job control languages
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11 2



Definition name: IncludesE__ludes

__________________________ Includes Excludes

Listed Plements are assigned to statement type
Clarifications (general)
1 Nulls, continues, and no-ops
2 Empty statements (e.g., ";;" and lone semicolons on separate lines
3 Statements that instantiate generics
4 Begin... end and {...) pairs used as executable statements
5 Begin.. .end and {... pairs that delimit (sub)program bodies
6 Logical expressions 6sed as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16

Clarifications (language-specific) ...... ..-..... . .... .. ...
Ada

1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin.. .end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8

9
Assembly ._ . ......

I Macro calls
2 Macro expansions
3
4
5
6

C and C++ .. ..... 1": -1 .1 -1 Null statement (e.g., ";" by itself to indicate an empty body).

2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a "for" statement
4 Block statements (e.g., f... ) with no terminating semicolon)
5 "{", "}", or ");" on a line by itself when part ot a declaration
6 "(" or ")" on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdef, and #ifndef
9

10
11
12

3



Definition name: nhesEcds

Listed elements are assigned to statement type
C M S-2.. ..............
1 Keywords like SYS-PROC and SYS-DO ___ ___

2
3
4
5
6
7
8
9 ____ ____

COBOL 7 =
1 "PROCEDURE DIVISION-, -END DECLARATIVES-, etc.- ___

2
3
4
5
6
7
8
9 ____ _ _ _ _

FORTRAN 777
1 END statements ____

2 Format statements_________
3 Entry statements
4_
5 ____

6
7
8

JOVIAL

2

4
5
6
7
8 ____ ____

Pascal
1 Execuitable statements not terminated by semicolons_________
2 Keywords like INTERFACE and IMPLEMENTATION________
3 FORWARD declarations
4
5
6
7 ____

8
9 _ _ _ _ __ _ _ _



Staff-Hour Definition Checklist
Definition Name: ______________Date:

Originator:
___ ___ ___ __ ___ ___ __ Page: 1 of 3

Type of Labor Include exclude totals_

Direct__ _ _ __ _ _

Indirect

Hour Information
Regular time ____

Salaried ___ ____

Hourly

Overtime
Salaried

Compensated (paid)_________
Uncompensated (unpaid)

Hourly __________

Tmlyest persone
Reporingtorganizaionterto

Teslti&mevauto ruH-W
Sotartie cniuainmngmn
Progtramcibara

Documentractir orkng/publicteprtnogaiations _____________

Traiontatrwking pesone subconracte task__ ___

Supontsutaffnts_ ____ ___



Definition Name: ______ ________Page: 2 of 3

Totals Totals Report
Include exclud, totals

Activity
Development

Primary development activity ____

Development support activities_____ ____

Concept demo/prototypes ____

Tools development, acquisition, installation, & support ____ ________

Non-delivered software & test drivers_________
Maintenance_____

Repair
Enhancement/major updates

Product-Level Functions .... ........

COC -Level Functions (Major Functional Element)...a
Software requirements analysis
Design

Preliminary design
Detailed design

Code & development testing_____. ____

Code & unit testing_____ ____

Function (CSC) integration and testing ____

CSCI integration & testing
IV&V
Management _________

Software quality assurance_________
Configuration management
Documentation
Rework_____

Software requirements
Software implementation

Re-design
Re-coding
Re-testing
Documentation__________

Build-Level Functions (Customer Release)
(Software effort only)
'SCI-to-CSCI integration & checkout
Hardware/software integration and test ____

Management
Software quality assurance_____ ____

Configuration management
Documentation
IV&V___ _



Definition Name: Page: 3 of 3

Totals Totals Report
include exclude totals

Product-Level Functions continued

System-Level Functions
(Software effort only)
System requirements & design

System requirements analysis
System design

Software requirements analysis
Integration, test, & evaluation _________ _________

System integration & testing
Testing & evaluation

Production and deployment
Management
Software quality assurance
Configuration management
Data
Training

Training of development employees
Customer training

Support



* Problem Count Definition Checklist
Software Product ID [ ] Page 1
Definition Identifier: [ ] Definition Date [ ]
Attributes/Values Definition [ I S ification I[
Problem Status Include Exclude Value Count Array Count

Open
Recognized
Evaluated _________

Resolved ____

Closed
Problem Type Include Exclude Value Cour. rra Count

Software defect ,. ____________________________________
Requirements defect
Design defect
Code defect
Operational document defect
Test case defect
Other work product defect

Other problems - ..... ..
Hardware problem
Operating system problem
User mistake
Operations mistake
New requirement/enhancement

Undetermined .

Not repeatable/Cause unknown
Value not identified

Uniqueness Include Exclude Value Count Array Count
Original
Duplicate
Value not identified

Criticality Include Exclude Value Count Array Count
1st level (most critical)
2nd level
3rd level
4th level
5th level

Value not identified
Urgency Include Exclude Value Count Array Count

1st (most urgent)
2nd
3rd
4th

Value not identified



Problem Count Definition Checklist
Software Product ID [ ] Page 2
Definition Identifier: [ ] Definition Date [ ]
AttributesNalues Definition [ I Specification [ I
Finding Activity Include Exclude Value Count Array Count

Synthesis of .............-........-.

Design
Code
Test procedure
User publications

Inspections of
Requirements
Preliminary design
Detailed design
Code
Operational documentation
Test procedures

Formal reviews of
Plans
Requirements
Preliminary design
Critical design
Test readiness _

Formal qualification

Testing
Planning
Module (CSU)
Component (CSC)
Configuration item (CSCI)
Integrate and test
Independent verif. and valid.
System
Test and evaluate
Acceptance

Customer support
Production/deployment
Installation
Operation

Undetermined
Value not identified

Finding Mode Include Exclude Value Count Array Count
Static (non-operational)
Dynamic (operational)
Value not identified
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